9LV offered for Squadron 2020

1.2 billion Euros. That’s the quoted cost for Finland’s four new Pohjanmaa-class corvettes being built under the Squadron 2020-project. An estimate thrown around is that roughly half of that sum is the ship itself, and the other half is the naval specific items. While Rauma Marine Construction, RMC, has more or less secured the shipbuilding contract, the fight is still on for the “battle system”. This consists of the weapons, sensors, combat management system, and their integration into the vessel, and with a contract likely coming in at over half a billion Euros, it has certainly grabbed the attention of the shortlisted companies.

One of these is Saab (the other two being Atlas Elektronik GmbH and Lockheed Martin Canada Inc), and this means that I find myself together with a small group of Finnish journalists and their photographers in a nondescript conference room at Saab’s facilities in Järfälla just outside of Stockholm. The large site include a number of different production as well as R&D facilities, and everything is designated a protected site by the Swedish authorities, meaning that we have to pay close attention to what we are allowed to take pictures of. The reason is simple.

Things happen quite often, more than you know.

What exactly happens is left open to imagination, but it is clear that it includes both cyber security as well as people physically moving around in the vicinity of the site.

A Trackfire in ‘Western’ configuration with a heavy M2 Browning machine gun an a light FN MAG machine gun. The Finnish ones mount the NSV and PKM for these roles respectively. Source: Own picture

But if Saab isn’t too keen on discussing the details of attempts at intelligence gathering directed against them, they are very keen on discussing Finland. “It’s almost a home market for us”, senior director for Naval Combat Systems Mickael Hansson explains. “We are very proud of that as well” he says and points to the currently installed product base in the Finnish Navy. This covers everything from the Trackfire remote weapon system which the Navy has developed something of a love affair with (it has been bought for all three classes being built or undergoing MLU’s during the last years), via radars, remotely operated vehicles, communication systems, missiles, and on to the 9LV combat management system.

Jonas Widerström has got a computer with way cooler games than yours. Source: Own picture

The 9LV is found in the Rauma-class, and soon in the Hamina as well as the system was chosen for the MLU. When asked what he believes were the deciding factors, Jonas Widerström, Saab’s Naval Sales Director Finland, mentions price, harmonisation with the Rauma-class, and above all the robustness of the system. Widerström should know, being a retired naval anti-aircraft officer having served aboard Swedish corvettes he has ample experience of the 9LV. Interestingly enough, the Hamina-class currently sports Atlas Elektronik’s ANCS 2000 but instead of upgrading this the Finnish Defence Forces chose to tear it out and replace it with Saab’s offering. While the Hamina MLU technically isn’t related to the Squadron 2020 CMS contract, it is clear that the MLU-contract means that Saab is the favourite for the larger deal as well. And Saab doesn’t beat around the bush when it comes to this.

We want to win this.

How is Saab then planning on doing this? The talking points comes as no surprise. They include a “comprehensive industrial participation package” and the value of having a harmonised C3I system with not only the Hamina-class but with the Swedish ships of the Swedish-Finnish Naval Task Group (SFNTG) as well. The 9LV is also sporting “pretty advanced” capabilities when it comes to converting between national and international data links and “very good sensor fusion software” with a rapid response time. Saab also points out that they have worked with the ESSM before on the Halifax-class (ironically as part of a team led by Lockheed Martin Canada), a system which “can be, maybe be on the SQ2020”.

To top off the offer Saab is bringing their own sensor suite. This is centered around the Saab Lightweight Integrated Mast (completely unironically abbreviated SLIM) which will be manufactured by Saab and delivered as a complete subassembly to the yard for installation aboard the ship. As a parenthesis, Saab explained that the renders showed this particular SLIM-setup “on another ship” and not on the Pohjanmaa-class. Hmm, I wonder what ship that could be…?

Pontus Djerf – if you need a radar, he’s got something to sell to you. Source: Own picture

The mast sports a number of sensors and communication antennas, the most important of which are the vessels main active sensors: the Sea Giraffe 4A FF (Fixed Face) and a single rotating Sea Giraffe 1X found inside. Keen readers of the blog will remember that Saab originally planned for a setup with a single rotating 4A accompanying the rotating 1X, and while the head of marketing and sales for Surface Radar Solutions Pontus Djerf (another retired commander) maintain that it is an solution that’s “often good enough”, the fixed face version is more future proof and provides additional benefits. As the project has proceeded, this has led Saab to swap out the rotating 4A to the FF. The fixed 1 x 2 meter AESA-arrays cut response times, but it does not replace the need for the 1X. Instead the two complementing radars operate in S- and X-band respectively (in addition any CEROS FCS-systems would bring a Ku-band radar to the ship) which brings a certain amount of redundancy and jamming resistance while also providing radars optimised for slightly different roles. In short, the 4A looks at the larger picture, while the 1X has shorter range but better resolution. Notably both radars sport features borrowed from Saab’s work with artillery location radars and small targets (such as UAV’s), or C-RAM and ELSS respectively.

A wild Giraffe 100 AAA appears! Finland operate a number of older Giraffe-radars, including the Army’s LÄVA short-range air surveillance radar. Source: Own picture

These are all interesting features for the Finnish Defence Forces, because as opposed to blue water fleets, the Finnish Navy is very much a force present on the right flank of the battlefield in any potential conflict. As such, the corvettes will play an important role in the grander picture (‘joint’ is a keyword for both the Squadron 2020 and the HX-programs) when it comes to establishing situational awareness and providing medium-ranged anti-aircraft support around the most populous areas of Finland. To be able to fill the needs of higher command, a serious sensor array of both active and passive systems coupled with an effective combat management system and the datalinks to share this information. Saab seems confident that they have the solution, and that they do so at a balanced cost/performance-ratio. We will have to wait for a few months and see if the Finnish Navy agrees.


Flotilla 2020 – A Strategic Acquistion

The Finnish corvette program is steadily moving forward, and it is nice to see that the Navy is also becoming more open regarding the project. A while back the Navy published a 20-page long document which in quite some detail went through the background of the project, and how it ended up with four multipurpose corvettes being the vessels of choice for Flotilla 2020. This was followed up by a four page article by captain (N) Valkamo, the Navy’s Assistant Chief of Staff / Plans, published in the personnel magazine Rannikon puolustaja (fi. Defender of the Coast). The latter provide a good overlook over the project, including the background research and some further nuggets of information compared to the longer text.

While the program seems to enjoy broad support amongst the Navy (unsurprising) and politicians, it continues to be something of a hot topic amongst parts of the general population and other service branches. With this in mind, it comes as no surprise that both texts place a heavy focus on the solid groundwork made before the decision to focus on four multipurpose corvettes was made.

First, the nature of the future naval battlefield was predicted, and yes, that include the presence of K-300 Bastion anti-ship missile system. After this, the question of how to cost-effectively solve the missions of the Finnish Navy in this threat environment was looked into, including a number of different configurations with vessels of different sizes and roles and in different combinations. Unsurprisingly, it was concluded that due to operational and tactical flexibility as well as economic factors (including both acquisition and life-cycle costs) a single class of multipurpose vessels was preferable over numerous different designs specialising in one or two roles and operating together. I’ve earlier discussed the issue of trying to coordinate different ships into a working unit, ensuring that the right one is always in the right place. A metaphor could be the merger of light, medium, heavy, infantry, and cavalry tanks as well as the tank destroyer into the jack-of-all-trades Main Battle Tank. Other alternatives that were looked into was transferring whole or part of the missions to air- or ground-based systems, but this was also deemed impossible to implement cost-effectively. Especially as e.g. mining require vessels out at sea in any case.

Screenshot 2017-03-21 at 19.52.23
An infographic depicting the timeline for all major surface units, including scheduled service date, MLU, decommisiong, as well as roles and capabilities. Source: Finnish MoD

This then caused the slight growth in size compared to the current mine ships, as the vessel needs to be able to fit numerous weapons and their sensors, as well as maintaining the crew complement and provisions needed for prolonged stays out at sea during escort or surveillance missions. Something which hasn’t been widely discussed is the need for speed. While the light fast attack crafts have impressive sprint speed, their ability to transit a high speeds over longer distances isn’t stellar, especially if you encounter adverse weather. In the same way, while a Ferrari might be faster than a Land Rover on the Nürburgring, the roles would quickly be reversed if they set off on a bumpy dirt road through the Finnish forests. The larger size does also allow for the ability to operate in ice, as well as better resistance to combat damage due to compartmentalisation.

Still, the size won’t grow too much. Partly because larger vessels aren’t an end in itself, and partly because both acquisition and life-cycle costs grow with the hull size. The Navy also face an issue with having a limited number of crew members with which to man the vessels. All of these factor in, and has lead to the current design. Importantly, keeping the total length around 100 meters and the draft low means that the vessels can use the current naval infrastructure in the Finnish archipelago, including the current network of secondary bases and the extensive network of inshore waterways.

Screenshot 2017-03-21 at 19.53.11
The 7 meter long and 900 kg heavy 1:15 scale hull model is pushed through the ice as part of the test program. Source: Finnish MoD

The hull form has been finalised, and scale test have been performed with an eye on different requirements. These include both resistance, manoeuvring, and ice-going capability. In addition, the new propeller design has been tested in full scale on the Navy’s auxilliary FNS Louhi. As was expected, the vessels will have a drop of MEKO-blood in them, as the concept has been fine-tuned by German design bureau MTG-Marinetechnik GmbH.

FNS Hämeenmaa (02) showing the 57 mm Bofors Mk I. Source: Puolustusvoimat

For the weapons and sensors, the RFI resulted in a number of suitable packages being identified, all fitting within the budget. One of these will then be chosen, with the (foreign) main supplier being responsible for providing an integrated warfighting capability (sensors, weapons, C3I, battlefield management, and so forth). One interesting change which I did not expect was the renaming of the anti-ship missiles from meritorjuntaohjus (sea-defence missile) to pintatorjuntaohjus (surface-defence missile), with the Navy’s new missile being slated to become PTO2020. It is possible that this change reflects the secondary land-attack capability many modern missiles have. The PTO2020 program is handled as its own program as it is destined for both the updated Hamina, the corvettes, and the land-based launchers. As such it is not included in the 1.2 billion Euro price tag of the corvettes, as is the case with the new light ASW-torpedo which will be acquired as part of the Hamina MLU.

In addition to these systems, several systems will also be transferred from the Rauma- and Hämeenmaa-classes, as well as from the already decommissioned Pohjanmaa. These include the deck guns, towed arrays, decoy launchers, mine-laying equipment, and fire control director. The deck gun is an interesting issue, as the Rauma is equipped with the Bofors 40 mm, of which there are four, while the Hämeenmaa feature the 57 mm Bofors Mk I, a considerably more suitable weapon for a corvette. Still, the Mk I is quite a bit older than the corresponding 57 mm Bofors Mk 3 which is found on the Hamina, and as we all know there are only two Hämeenmaa vessels in service. However, it is possible that there are more guns in storage, as the two scrapped Helsinki-class vessels as well as the Pohjanmaa also had a single 57 mm Bofors Mk I each, and the Finnish Defence Forces is famous for not throwing away something that might prove useful further down the line. As a matter of fact, I wouldn’t be surprised if the current guns mounted on the Hämeenmaa-class are these recycled Helsinki-class guns… In any case, I expect to see the 57 mm Bofors L/70 mounted on the corvettes, and probably upgrade to a Mk 3-ish standard in order to be able to fire smart ammunition remotely.

The decoy launcher is more straightforward, as both classes feature the modern Rheinmetall MASS. The towed arrays currently in service are the active Kongsberg ST2400 variable-depth sonar and the SONAC PTA passive sonar. Very little information is available on the latter, but it is understood to be a rather conventional system well suited for littoral operations with both narrow- and broadband waterfall displays. As the current number of arrays has been quite small, and as the Hamina will also take up the ASW-role as part of their MLU, it is entirely possible that more arrays will be acquired. It is also unclear if all corvettes will get both active and passive arrays, or whether they will be limited to either mode of operation.

The scale model shown by Saab at Euronaval 2016, featuring a Giraffe 4A and a 1X above it in the cut-outs. This combination of shrouded rotating radars (the cut-outs are for illustrative purposes only) gives both long-range search capability and short-range tracking of rapidly closing targets. Photo: Saab, used with permission

Interestingly, the fire-control sensor is the Saab CEROS 200 radar and optronic tracking fire control director. This will likely strengthen Saab’s already strong offering, as they already have a tried solution for integrating the CEROS into their 9LV combat managment system, together with their RBS15 MK3 missile and Sea Giraffe radars. The 9LV is already a familiar product to the Finnish Navy, and it would come as no surprise if Saab would be the prime contractor for systems integration. Other companies likely in the running include Atlas Elektroniks (prime contractor for the ongoing Pansio-class MLU), Kongsberg (best known for the NSM anti-ship missile, but has a wide portfolio of naval products), and Raytheon (sporting strong references).