Ivan Gren 2.0 – new capabilities and tactical refinements

The lead ship of the Russian Ivan Gren-class had a long and troubled start of it’s career, requiring over 20 years of work before it finally was accepted into operational service in June 2018. For a while the whole future of the project, including the second sister laid down in 2004, seemed to be in jeopardy. However, the French refusal to deliver the two Mistral-class vessels built for the Russian Navy following the Russian invasion of Crimea suddenly threatened the ability to maintain the amphibious capabilities of the Russian Navy in the medium term. As such, work continued/was restarted on the second vessel, named Pyotr Morgunov, in late 2014.

c2abd098d0b2d0b0d0bd_d093d180d0b5d0bdc2bb
Ivan Gren at sea. Note the bow doors. Source: Mil.ru via Wikimedia Commons

The Project 11711 Ivan Gren-class is significant for the Russian Navy in many ways. It is one of very few major warships to be added to the Russian Navy since the end of the Cold War, and as such is important both from an industry and prestige point of view. But that also mean they play a key role in revitalising the amphibious fleet, which currently mainly rests on ex-Soviet Ropucha-class LSTs backed up by the last few Tapir-class LSTs. The newest of these are approaching 30 years in service, with the older ones dating back to the late 60’s. The fleet has also been heavily worked as part of the Russian campaign in Syria, where they have run cargo between Black Sea ports and Syria on a regular basis. As such, a replacement is sorely needed.

ivan_gren_landing_ship_28229
The stern of the Ivan Gren, showing the rear ramp as well as the helicopter platform and hangar in the rear island. Source: Mil.ru via Wikimedia Commons

A short interlude on explaining the different kinds of amphibious ships and what makes them differ from each other:

  • The Landing Ship Tank, LST, is a large landing craft capable of traversing open waters which can be driven onto the beach and unload vehicles through the bow,
  • The Dock Landing Ship, LSD, has a well dock (hence the name) from which it launches landing crafts which then ferry personnel and vehicles to shore,
  • The Landing Platform Dock, LPD, functions as a LSD but has better aviation facilities to be able to support helicopter assaults,
  • The Landing Helicopter Dock, LHD, and Landing Helicopter Assault, LHA, both look like small carriers with full-length flight decks and a focus on helicopter and V/STOL operations. The LHD also has a well dock, while the LHA doesn’t.

Both the LSD and LPD can be found with bow doors similar to the LST, making vessels such as the Ivan Gren hard to classify accurately. This is especially true, as the designations above are based on US naval vessels, and vessels of other nations doesn’t necessarily strictly adhere to the same dividing lines. In the case of the Ivan Gren, it lacks a well dock, but the presence of a hangar is something unheard of in most other LSTs.

The Mistral-class is a typical LHD, which can bring in a 40-tank strong Leclerc battalion, some 900 troops, and some 16 heavy helicopters in shorter operations. To say that by acquiring the significantly smaller Ivan Gren (13 tanks or 36 APCs, 300 troops, 2 helicopters) the Russian Navy replaced the shortfall in amphibious capability would be a lie. In essence they go from being able to lift a tank battalion to being able to lift a reinforced motorised company per ship. However, the vessels still hold great potential, though especially the Ivan Gren has been plagued by technical issues.

navallanding2015-19
Ropucha-class LST Aleksandr Shabalin unloading a swimming BTR-80 APC which will drive the last part to the shore under it’s own power. Source: Mil.ru via Wikimedia Commons

A notable tactic of the Russian Ropucha-class is that instead of driving all the way to the shore and beaching the bow, they stay some distance out and let amphibious vehicles enter the water through the bow doors and ‘swim’ the last part to the shore. This has certain benefits, as well as some rather significant drawbacks. The obvious benefit is the ability to use shores where the large LST can’t safely beach itself. The requirements for a suitable landing spot are rather strict, as it should be solid enough and at a shallow enough angle to allow the forces to disembark safely, while still being deep enough to allow for safe passage to and from the shoreline. The LST is also kept out of range of most infantry weapons, with the swimming vehicles providing smaller and less valuable targets. The biggest drawback is that it takes significant time for the APCs to reach shore, giving prolonged warning to the waiting defenders. The swimming vehicles are also more vulnerable to bad weather compared to the larger ship, and while their low profile makes them hard targets, their situational awareness is seriously hampered until they can get out of the water. As such a dug-in defender with ample anti-tank weapons can wreak havoc on an incoming wave of swimming APCs.

20181030-osh_dvdag-9
A typical modern amphibious assault from NATO exercise Trident Juncture 18 with a heavy CH-53E transport helicopter heading to shore escorted by an AH-64 Apache attack helicopter, with landing crafts below and a Mistral-class LHD in the background. Source: Ole-Sverre Haugli/Forsvaret

The obvious solution then is to add speed. This is nothing new, with both the US and the Soviet Union having added some classes of faster landing crafts and, crucially, helicopters to their amphibious forces already during the Cold War. The helicopters give the possibility to secure spots that aren’t reachable from the sea (i.e. in the enemy rear), and provides significantly faster cruise speed compared to any landing crafts found. But if landing a motorised battalion by sea is hard, helicopters aren’t suitable for anything heavier than light infantry, make a serious amount of noise, and have their own set of requirements when it comes to landing locations. As such the need to be able to bring heavy ships close to shore will remain if the landing is to be able to open up a new front (in the long run a harbour with working port facilities will have to be secured, which further opens up interesting tactical and strategic considerations which are too complex to fit inside the scope of this post. Just be aware that securing a beachhead is rarely enough).

The Mistral could thus have landed infantry units by helicopter to secure key spots along the shoreline and protect the beachhead from counterattacks until the main fighting force, including tanks, could be carried ashore by the heavy landing crafts operating out of the Mistral’s well dock. The Ivan Green can try to do a ‘lighter’ version of the same thing, with a total of two Ka-29 transport helicopters carrying two squads each ashore to be followed by infantry in swimming BTRs. The use of helicopters is also evident in how the Russian naval infantry brigades are set up, as one of the three (or possibly four) rifle battalions in any brigade is airmobile.

The other option is to use faster landing crafts. The general arrangement of the Ivan Gren is such that landing crafts can be carried as deck cargo (light craft such as RIBs can also be launched and apparently retrieved over the stern ramp). However, the lack of a well dock means that these have to be carried as deck cargo and then hoisted with a crane over the side of the ship, a time-consuming maneuver which also increases the risks during the transfer of soldiers between the LST and the landing craft compared to using a well dock.

raptor_ship
Project 03160 ‘Raptor’ at sea. Source: FmGo . 111 via Wikimedia Commons

The latest development is that the Russian Navy has ordered two further vessels of a modified Ivan Gren-class. These will be further tailored to provide additional options to the task force commander when it comes to how the forces will be landed, namely with improved aviation facilities and better facilities for handling landing crafts. These are stated to be either of the Project 03160 ‘Raptor’ or the similar looking Project 02510 BK-16 classes. Both of these are best described as combat boats or assault landing craft, being able to transport around twenty marines to shore at high speed, and then support the landing with machine guns and other infantry support weapons from roof-mounted remote weapon stations. The reasoning behind this is clearly stated in an Izvestia-article, where former chief of the General Staff of the Navy, Admiral Valentin Selivanov, was interviewed:

Boats will allow the special forces to quickly and quietly approach the shore to ensure a successful landing of the main wave of the landing. They will destroy the most important firing points, demining approaches to the coast.

The special forces in this case could be ‘true’ SOF such as OMRP, or elite marine infantry such as the separate reconnaissance battalions of the naval infantry brigades (724th Separate Reconnaissance Battalion in the case of the Baltic Fleet’s 336th Guards Naval Infantry Brigade). Another interesting aspect is that modifications to enhance the ability to operate the assault crafts are apparently still unconfirmed, and could include either a dedicated chute or even a well dock instead of the rear ramp. While the latter is unlikely considering the serious modifications to the basic design it would entail (especially considering the projected in-service date of 2024/2025), it would be a significant improvement to the Russian capabilities and in essence make the two vessels of the second batch LPDs rather than LSTs. This would also improve the ability of the Russian Navy to operate far from home both on amphibious assault missions as well as on more peaceful ones, such as disaster relief.

In essence, the non-delivery of the Mistral-class has caused a serious gap in Russian amphibious capabilities in the near- to mid-term, especially when it comes to the ability to conduct stand-off amphibious landings with helicopters and fast landing crafts. Now the Navy is trying to make up for at least part of the shortfall in capability through ordering more vessels of the troubled Ivan Gren-class and trying to adopt the design to better fit the stand-off requirements. Time will tell if this will make a useful workhorse of the class in the vein of the venerable Ropuchas, or if it will be left a poor attempt to beat a square peg into a round hole.

Hat-tip to Robe Lee (@RALee85) who first brought the story to my attention. Head over to Twitter and give him a follow if Russian equipment is of any interest to you!

Advertisements

Saab to supply 9LV for Pohjanmaa-class

The Finnish MoD today announced that they have shortlisted Saab as the preferred supplier for the combat management system, CMS, for the upcoming Pohjanmaa-class of corvettes. This does not only mean that Saab’s 9LV CMS will be at the heart of the vessel class, but also that Saab will be the main supplier and integrator of the naval systems of the vessels.

9LV Mk3E ASMD
The operator room aboard the Royal Australian Navy’s HMAS Perth ANZAC-class frigate, the brains of which is Saab’s 9LV. While the vessel is larger than the Pohjanmaa-class will be and individual systems differ, the picture gives an idea about how the operator room of Pohjanmaa likely will look. Picture courtesy of Saab

Due to Finnish internal politics the contract for the system won’t be signed just yet. As a political stunt, the outgoing prime minister Juha Sipilä dissolved the government shortly before the Finnish parliamentary elections. While the ministers stayed on as caretakers up until the elections held later this week, the main shipbuilding contract as well as the CMS contract were deemed too important to be handled by an acting minister of defence. As such, the formal contract will be signed only once Finland have a new government in place, which likely will take another month or two. However, the decision to name Saab as the preferred bidder after all three shortlisted candidates have made their best and final offers makes it highly unlikely that the decision to hand it to Saab would be overturned at the last moment.

The contract is a significant one from a Finnish point of view, with the total value likely to be in the range of hundreds of millions of Euros. Despite missing out on replacing the outgoing RBS 15SF (MTO 85M) anti-ship missiles, this further cements the position of Saab as the key systems supplier of the Finnish Navy. Not only will Pohjanmaa- and both FAC-classes have the 9LV once the Hamina-class have undergone their MLU, a number of sensors and other weapons have also been acquired from Saab. These include CEROS fire-control sensors, TP 47 light-weight torpedoes, and the Trackfire RWS which will be found on most Finnish surface combatants as well as auxiliaries.

IMG_6938 GIMP
Jonas Widerström, Saab’s Naval Sales Director Finland, with one of the Multi-Function Consoles which form a key part of the user interface of the 9LV. Source: Own picture

Today’s press release doesn’t further elaborate on why Saab was chosen, but it is highly likely that the reasons mentioned by Saab when they discussed the offer last year eventually where the ones to seal the deal: Price, robustness, a “comprehensive industrial participation package”, “pretty advanced” capabilities when it comes to converting between national and international data links, and having a harmonised C3I system with both the Hamina-class as well as with the Swedish ships of the Swedish-Finnish Naval Task Group (SFNTG).

Saab will now get to integrate the main weapons systems, the Gabriel SSM, ESSM SAM, Bofors 57 mm guns, and the TP 47, as well as all the sensors and data links into a single working platform. Several of the sensors are still unconfirmed, but in accordance with earlier information it seems highly likely that the key sensor will be Saab’s Sea Giraffe 4A FF. This will be part of the SLIM (Saab Integrated Lightweight Mast), which will also feature ESSM equipment and a single rotating Sea Giraffe 1X. Operating on the X-band, the 1X has shorter range but better resolution compared to the S-band of the 4A. The SLIM will be delivered as a complete subassembly to the yard, which can then install it as a module. It is also likely that the vessels will be fitted with the Kongsberg ST2400 towed array for operations in the ASW-role*, as well as the Saab TactiCall integrated communications system.

The final look of the vessels is slowly taking shape, with only a few key pieces still unconfirmed. These include the length of the Mk 41 VLS tubes, though it seems likely they will be of the full ‘Strike Length’-versions, as well as the secondary gun system responsible for close defence against airborne threats and munitions as well as against smaller surface targets. It is probable that by the time we celebrate Navy Day in early July these last pieces of the puzzle will have been confirmed, and the building of the vessels can finally begin in earnest.

*I am working in another, unrelated, division at Kongsberg Maritime. However, all information regarding the ST2400 I have is from open sources. The guess is purely based on the fact that the ST2400 has been ordered for the Hamina MLU, and so far most new systems acquired for the Hamina MLU has also found their way to the Pohjanmaa-class.

Weapons & Ammunition

The Swedish Defence Materiel Administration, FMV, has issued a briefing on the ground forces’ part of their Materiel Plan 20 (hat-tip to HenrikJ on Twitter, FF as we say over there). In short, this is a look at a number of weapons and systems the Army will need in the next few year. Notable is that they are funded inside the current budget and quantities correspond to the current size of the Swedish Defence Forces. And because everyone loves a spirited calibre war, the thing that caught my eye was the plan to swap out all firearms at the squad level.

20111201_nicgus03_MOUT_005.jpg
A half-squad from the 422. Company at the MOUT training facility in Kvarn showing the current weapons of Swedish regular units. Left to right: Ksp 90, Psg 90 (on back), and Ak 5C with and without grenade launcher. Source: Nicklas Gustafsson/Swedish Defence Forces

The weapons includes Ak 4 (H&K G3), Ak 5 (FN FNC), Psg 90 (AI Arctic Warfare/L96A1), and the Ksp 90 (FN Minimi). In addition, a designated marksman rifle is to be acquired. Of these, the Ak 4 is the old main service rifle, currently it is mainly used by the Home Guard. The other four weapons are the main squad level weapons of the regular force.

The most prolific weapon of the Swedish forces is without doubt the Ak 5. Contrary to the earlier FN FAL, the 5.56 NATO chambered FNC was a limited success, with Sweden being the only western country to acquire it outside of its native Belgium. In Swedish trials the FNC beat a modified Galil SAR and was adopted in the winter of 1986/1987, making Sweden a pioneer when it came to switching from 7.62 mm to 5.56 mm. The Ak 5 was license-produced in Eskilstuna, and from the get go it has been featuring unique Swedish modifications, spawning a family of it’s own compared to the baseline FNC. In total, approximately 27,500 of the latest version Ak 5C/D were ordered. 

ak-5-at-lohtaja-1-10
Swedish sailor standing guard with his short-barreled Ak 5D aboard a Swedish corvette during a port call in Finland in 2010. Source: Own picture

The other weapons have scored more notable export successes. The Minimi, or M249 SAW which it is still best known as (although the ‘SAW’ has officially been changed), was the outcome of the decision to create a light machine gun able to use the same ammunition as the rest of the squad, i.e. the 5.56 NATO round. It is not a bad weapon per se, but it certainly lack the firepower of light machine guns chambered in 7.62 NATO. The Arctic Warfare is your basic sniper rifle in 7.62 NATO. Accurate, big power optics, costs an arm and a leg, but crucially makes it possible for a trained sniper to hit individual targets out to 1,000 meters.

The interesting part is that the briefing emphasised that the requirements are to be focused on the “system”. While this shouldn’t be read as a single weapon doing everything, it does offer an edge to any supplier able to cater to all or several of the four weapons needed (assault rifle, designated marksman rifle, light machine gun, and sniper rifle). However, a split buy likely isn’t ruled out (especially when it comes to the sniper rifle). The programme, including trials, will take place during 2019 to 2024 with the main deliveries starting in 2025. A total of 2.2 billion SEK (210 million Euro) is allocated for the 2021 to 2030 period.

If we start from the most basic weapon, the assault rifle (likely in full-length and carbine length versions) will likely be a new 5.56 NATO weapon. For quite some time there has been new wonder-rounds appearing with tiresome regularity, but despite the praise calibres such as .300 BLK or 6.8 SPC has garnered from firearms aficionados, love is waiting to blossom out when it comes to these wildcat(ish) rounds and the greater defence community. The reason is not that they would be bad, but rather that the task of switching away from 5.56 NATO which has become the de facto western standard to something else causes major disruptions when it comes to logistics and interoperability. As such, I don’t foresee a shift away from the 5.56 NATO for most Swedish soldiers.

In the same way it would be very surprising if the designated marksman rifle is anything else than a 7.62 NATO weapon. The round excels in combining a relatively manageable recoil and a reach out beyond that of the 5.56 NATO, while at the same time being in widespread use both amongst military, law enforcement, and civilian users.

The light machine gun is a more interesting one. The FN MAG is in Swedish use as the Ksp 58, though the versions available are quite old (read: heavy), and in its current guise likely won’t migrate down to fill the squad level-role. However, stepping up from 5.56 NATO to 7.62 NATO is entirely possible, especially as the designated marksman weapon likely will bring the calibre into widespread use anyhow (though sharing ammunition between the DM and the machine gunner will likely stay an emergency measure only).

SPOL tarkamp
Finnish military police sniper covering a helicopter landing zone. The weapon is the Sako TRG-42 chambered in .338 LM, or 8.6 TKIV 2000 as it is locally known. Source: Maavoimat FB

For the sniper rifle, while 7.62 NATO has long been the standard round, I find it highly likely that the new weapon will follow international trends a go up a notch to .338 LM. It does allow for longer shots compared to the 7.62 NATO, but the big benefit is that it is more forgiving at the ranges beyond a few hundred meters, thanks to the better ballistics and higher hitting power. On the downside both weapons and rounds are significantly more expensive, and it would mean adopting a completely new round into Swedish service.

The Contenders

To begin with, let’s not pretend that there is any single obvious choice for any single one of the weapons. With that said, some weapons certainly would be less surprising than others. Notable is the fact that there are no Swedish gunmaker able of handling even license production of the order following the closure of the Eskilstuna rifleworks in 2012.

SFG_SFAUC
Belgian special forces operator with a SCAR-L. Source: Lithiummm01 via Wikimedia Commons

FN Herstal has an interesting arsenal to offer. The FN-SCAR is widely seen as one of the best assault rifles currently in use. It is offered in numerous configurations, including the basic SCAR-L (available with both 14.5” and 10” barrels) and the sub-compact SCAR SC (7.5” barrel), as well as the SCAR-H in 7.62 NATO (available in the PR designated marksman/semi-auto sniper version). FN Herstal also has a number of options for the machine gun, offering the modernised MINIMI Mk3 in both 5.56 NATO and 7.62 NATO as well as numerous versions of the earlier mentioned FN MAG in 7.62 NATO. The SCAR has received several orders, but mostly from elite units (including the Finnish Special Jaegers) and scoring noticeably worse when it comes to larger orders for general service rifles.

In the same way, Heckler & Koch has an impressive array. The HK416 (5.56 NATO) and HK417 (7.62 NATO) is a duet that has secured an impressive string of orders. The biggest gem in this string of pearls is without doubt the decision by France to replace their homemade FAMAS with the German design. Closer to home, Norway has adopted them as well. The weapons are based on the classic AR-design, but feature a short-stroke piston. For the German G36C replacement, H&K has offered the newer HK433 instead, which is available in numerous configurations. So far it has failed to receive any orders, but in case it does become the main German assault rifle the outlook for the rifle could change overnight. HK also have the MG4 in 5.56 NATO and MG5 in 7.62 NATO when it comes to machine guns, and the G28 designated marksman rifle version of the HK417.

Haenel MK 556 is the other contender for the German contract. The company has a more civilian portfolio, with machine guns being absent. They do however, offer a number of 7.62 NATO chambered rifles which are suitable for marksman duty.

Other obvious contenders are more traditional versions of the AR-family which are available from numerous manufacturers, including the Lewis Machine & Tool Company which recently secured the contract to replace Estonia’s Ak 4s (though the order has been challenged in court).

As is evident from the rundown above, the one weapon missing is a bolt-action sniper rifle, with the others usually having the option of being found from a single manufacturer. Quite a number of .338 LM sniper rifles are found on the market, with the Sako TRG-42 likely being the market leader, but there are several others in use such as the AWM in British service as the L115A3 (the AWM is now replaced by the AXMC, which likely will be the contender for a Swedish order) or the McMillian TAC-338.

Meanwhile, in Finland

PlantaRodadora
Source: EriKolaborator via Wikimedia Commons

Tumbleweeds. Crickets. The ghosts of Butch Cassidy and the Sundance Kid riding by in the distance.

During a century of Finnish Defence Forces, a total of two platforms have been the main weapons of the Finnish infantry: the Mosin-Nagant M91 (that’s 1891) and the AK-family of assault rifles. And while the M91-family is slowly being retired (a sniper rifle built on the original receivers is still around), the AK-clones are set to overdo their stay.

“But wait”, my trusty old Rk 62 says. “Don’t you remember when we scored a perfect 20 on the rifle qualification? That was how I made you love me!”

The Rk 62 and the newer Rk 95 TP are arguably some of the best AK-clones available in 7.62×39 mm, being machined and featuring details such as the rear sight being moved further back for a more accurate sight picture thanks to tighter tolerances. The weapon is accurate enough when you have time to find a good firing stance and shoot at 75 meters. Still, there’s no denying that both the platform and calibres are getting old. The updated Rk 62M is better, especially thanks to the improved stock and the Aimpoint Comp M4 Micro T-2 sight combining to make quick shots and recoil management easier. Still, it is largely a question of coating a dated design in a liberal amount of sugar and calling it sweet. And to make matters worse, a large number of wartime Finnish troops would not get a Finnish-built weapon, but one of any number of East German and Chinese AKM-copies which have been bought in droves to equip the second and third line troops. Edit: It seems I was wrong on this one, and while there are significant stocks of AKM-copies left, the current size of the Finnish wartime force is covered (with some margin) by the estimated number of Finnish-built weapons available.

For a long time I have been arguing against introducing a new assault weapon for the Finnish Defence Forces. Rifles generally age well, and if one has to choose between introducing a new rifle with a new main calibre against something like the 155 K9 Moukari artillery system, the new SPGs are the obvious choice. However, we are moving towards the point in time when waiting is no longer an option. As such, we could certainly do worse than ensuring an option to piggyback off the Swedish firearms trials in the same way the Estonian Defence Forces bought their K9s under the same contract as the Finnish artillery. Buying the same assault rifles, designated marksman rifles, and machine guns as Sweden would allow us to phase out a large number of the worst AK-clones, the Dragunovs and possibly the last 7.62 TKIV 85, as well as the 7.62 KvKK 62 light machine guns. The 7.62 PKM is still a modern weapon, so there is no need to replace those. However, additional buys are a no-no after Crimea.

I hereby suggest a study into how piggybacking upon the Swedish firearms program with a 450 million Euro program of our own could increase the lethality of the Finnish infantry. This ought to be funded outside of the normal defence budgets, in line with other ongoing strategic acquisitions.

HX Shifting Gears

The HX program has shifted gear into the next phase, as all five contenders returned their answers to the first round of the RFQ (for those needing a primer on the process, see this post). As noted all five are still in the race, but a few notable events have taken place.

On the Air Force-side of things, the Chief of Defence (and former Air Force CinC) was quite outspoken in an interview back in December, where he amongst other things highlighted the need for Finland to ensure that we aren’t the sole operator of the HX towards the end of it’s operational life. This is in essence nothing new, it was noted as an issue for the continued operation of the Hornet-fleet past 2030 in the original HX pre-study, and could in all honesty been seen from a mile away. Still, it was felt that the decision to speak openly about one of the key points that set the F-35 aside from the rest of the bunch (i.e. a widespread international userbase which will operate the aircraft as their prime combat aircraft past 2060) was surprising given the continued emphasis on the competition still being wide open. However, given the obvious nature of the issue, I find it difficult to get too excited over the quote.

There will however be some personnel changes, as a scandal has rocked the Air Force with a wing commander being under investigation for less than proper conduct while drunk during an Air Force-sponsored trip with local stakeholders. This has also raised questions about how the investigation has been conducted by his superiors, something which has likely played a part in both the Air Force chief and the chief of defence declining to apply for extensions of their respective terms, instead opting to retire when their current terms are up. This likely won’t affect the HX program in any meaningful way.

F-35C Lightning II from VFA-101 ‘Grim Reapers’ taking off from USS George Washington (CVN-73) during F-35C Development Test III. Picture courtesy of Lockheed Martin, photo by Todd R. McQueen

Back to the F-35, preciously little has come out regarding the offer. This is due to Lockheed Martin not being allowed to comment upon anything, as the offer is made by the US Government. That means we still haven’t gotten confirmation that it is the F-35A that is on offer, leaving the door open for the odd chance that the carrier-based F-35C would be seen as better suitable tp Finnish requirements. That detail will likely become clear soon enough, but in the meantime we can note that the F-35C declared IOC recently, meaning that all three versions of the F-35 now are operational. The F-35B recently finished it’s first combat cruise, and scored a 75% availability rate. That number is perhaps the most impressive metric to come out of the F-35 program during the last year in my opinion, as that availability rate would be acceptable for mature operational fighters operating from their home base. Now it was achieved by a brand new STOVL aircraft operating in combat from a small carrier, clocking twice the hours of its predecessor. While questions surrounding the ALIS and other parts of the program still exist, this is a strong sign of maturity. The F-35 still in many ways remain the fighter to beat for anyone aiming for the HX-contract.

On the opposite side of the spectrum, while the F-35 is still undefeated in combat, it is no longer so on the market. This is following the German decision to drop it from their Tornado-replacement program, where the Eurofighter Typhoon and the F/A-18E/F Super Hornet will now go head to head for the deal. The undoubtedly political decision to drop the F-35 at this early stage has received widespread criticism, including from not one but two former chiefs of the German Air Force (and as opposed to how the HX-debate looks in Finland, both of the generals have recent experience, having retired in 2009 and 2018 respectively). However, the decision isn’t quite as far-out as some would like to make it, as both the Typhoon and the Super Hornet actually hold significant selling points. Crucially, Germany already operate the Typhoon, making it easier to just raise the number of aircraft than to integrate a new fighter. For the Super Hornet, it should be remembered that Germany besides the ground-attack Tornado IDS also operate the SEAD/DEAD-variant Tornado ECR, one of very ‘Wild Weasel’ aircraft currently in service anywhere in the world. And the only modern Wild Weasel aircraft found on the market is the Super Hornet-based EA-18G Growler (we’ll get to that shortly). Will the German decision affect HX? Yes, although mainly indirectly by securing another reference to either fighter, and likely to a lesser extent than another recent German decision.

Germany decided to despite considerable British and French pressure continue to block arms sales to Saudi Arabia over the War in Yemen and the brutal murder of journalist Khashoggi. The actions are certainly correct in my personal opinion, the War in Yemen and the murder were both particularly brutal (even considering the fact that wars and murders in general are brutal), but it also points to a willingness of Germany to pull the brakes on arms exports contrary to the wishes of other major European countries. In itself that isn’t necessary worrying, but Germany has also shown a worrying tendency of running their own show when it comes to relations with Russia (case in point: Nord Stream 2). Taken together, especially when considering Russia’s usual taste for false flag operations and trying to shape the narrative of any conflict, the risk of Germany stalling orders and urging both sides to de-escalate in a potential Russo-Finnish crisis is probably being analysed in Helsinki. It’s hard to quantify the risk (especially with Trump having demonstrated that rapid political swings can take place elsewhere), but it likely didn’t improve the prospect of Typhoon taking home HX.

Italian Eurofighter touching down at Tikkakoski Air Base last summer. Source: Own picture

What might have improved the odds was the Spanish Air Force showing how an operator can both develop their own upgrade path and benefit from cooperation with the other partner countries. In the case of Spain, the country follows the common upgrade path with the Tranche 2 and 3 Eurofighters. At the same time, being unhappy with the roadmap for the Tranche 1 fighters, it has independently embarked on a more ambitious program for those aircraft. The big cloud still hanging over the Eurofighter program is whether any operator will be invested in it as their primary platform up to 2060, or whether they all will have moved on with the upgrade funds of their air forces largely being allocated to whatever comes next.

The second 39E, 39-9, taking off. Picture courtesy of Saab AB

If Lockheed Martin is unable to talk much about their offers, Saab is more outspoken and even flew a bunch of journalists to Sweden to inform them about the offer. The big news was that Saab offers a domestic production line, and that the fleet would be a mix of 52 JAS 39E single-seaters with 12 JAS 39F two-seaters. The Finnish Hornet-order was 57 F/A-18C single-seaters and 7 F/A-18D two-seaters, so this would be a remarkable shift from a ratio of 8:1 to 4:1. While it is well-known that the Finnish Air Force in hindsight would have wanted more two-seater Hornets for the conversion training role, Saab is open with the fact that training needs isn’t the main reason behind the inclusion of a squadron of two-seaters.

Often there are other drivers for and needs of a two-seat aircraft configuration that, in combination with the more traditional training-related benefits, makes it relevant to procure two-seat fighters. 

Magnus Skogberg, program Director of Saab’s HX-bid

In essence this means that Saab is arguing that the needs of the Finnish Air Force is best met by a squadron of two-seaters backing up the single-seaters for certain missions, while at the same time the two-seaters can obviously provide benefits for the OCU-mission i peacetime. The 39E and 39F are more or less similar, with the cockpit setup being the same in the front and rear cockpits of the 39F, as well as in the sole cockpit of the 39E. This means that all will be equipped with the same wide-angle display that will be found in both Swedish and Brazilian fighters. Any Finland-specific details, configurations, or equipment will also be the same for both versions. The only major difference is that the 39F does not feature the internal gun. Both versions sport an onboard electronic warfare system, which include electronic attack capabilities, and which can be further supplemented by podded jammers and sensors. This is where the second crewman comes into the picture, as there’s a real risk that the human brain will run out of bandwidth before the options of the EW-system does.

Gripen F with its two seats, naturally provides additional flexibility to handle very advanced missions where it may be advantageous to have an additional pilot or operator on-board. Examples are Electronic Warfare Officer, Mission Commander and/or a Weapon System Officer in the rear-seat.

Magnus Skogberg, program Director of Saab’s HX-bid

The same can be said for advanced long-range strike missions, and in the air-to-air role the use of modern data links even makes it possible to have an aircraft with the backseater working as something akin to the Fighter Allocator of an AWACS, concentrating on staying up to date with the situational picture and issuing orders to other airborne friendly fighters. Is there a benefit of moving the fighter controller from the ground to the backseat of a fighter? Possibly, in general the Finnish Defence Forces likes to have the one calling the shots to be situated close to the action, though the benefit is likely smaller than when it comes to EW and strike missions. While Saab maintains that two-seaters offer significant flexibility in multiple roles, it seems that the main focus is on the 39F as a SEAD/DEAD asset.

The EA-18G Growler in flight. Note the size of the AGM-88 HARM anti-radiation missile under the left wing compared to the AIM-120 AMRAAM missiles under the air intakes. Picture courtesy of / All rights reserved – Boeing / Aviation PhotoCrew

Boeing is in essence bound by the same non-disclosure issues as Lockheed Martin. However, they have managed to get permission to discuss some aspects of their offer, and happily fill in any blank spots by referencing how the US Navy (and to a lesser extent the other flying services) perform their mission. The big deal was that Boeing is now officially offering not only the F/A-18E/F Super Hornet in the most modern Block 3 configuration, but the EA-18G Growler dedicated SEAD/DEAD version as well (though ‘dedicated’ should be interpreted carefully, as it can do everything the F/A-18E/F can do, with the exception of sporting two wingtip short-range air-to-air missiles). Boeing could not speak about the Super Hornet/Growler ratio to Finland, but notes that on a US carrier it is currently 44 Super Hornets to 5-7 Growler, with the intention being to raise that to 10-12 Growlers. In the case of Finland, that would mean 10 to 15 Growlers out of the total of 64 fighters.

Boeing isn’t one to downplay the importance of this move. The release for export took place in extremely short time (comparisons to the ~10 years it took to clear the AGM-158 JASSM were made), and this is a tangible example of the strong Finnish-US bilateral bond when it comes to national security. A bond which kicked off in earnest with the acquisition of the F/A-18C/D ‘legacy’ Hornet back in the 90’s (though you might argue that correlation doesn’t equal causation here, as it also coincided with the end of the Cold War). The US sees a Finnish acquisition of modern airborne capabilities as another way of improving stability around the Baltic Sea through improving Finland’s conventional deterrence. The Growler would add significantly to Finland’s “Tröskelförmåga“, threshold capability, as senior advisor (and retired admiral) Juhani Kaskeala explained using the Swedish word, and as such is nicely in line with US strategic interests.

You can trust the Super Hornet

Juhani Kaskeala, senior advisor at Blic

The Super Hornet Block 3 may be one of the most advanced versions of any fighter available, but Boeing also makes an important point of the fact that all cards are already on the table. They know “exactly” what it costs to operate the fighter, a sum which is lower than that of Finland’s current Hornet’s despite the Super Hornet being heavier, and they know how many hours they can get out of any given aircraft. The current lifespan is 10,000 flight hours per aircraft, compared to just 6,000 flight hours of the legacy ones (Finland has experienced issues reaching that number, due to the larger proportion of heavy-G air combat maneuvers flown by the Finnish Air Force). Boeing’s package is within the budget of the program, though they aren’t able to comment upon the cost of the package in any detail. The question of cost is interesting, as Boeing has gone three for three in the last major US defence contracts (T-X, MH-139, MQ-25), in a move that has largely been described as Boeing buying the deals. What you lose on the swings, you make up for on the roundabouts, and the fact that Boeing in essence is the world’s largest civil aviation business with a sizeable defence division makes it able to manage the cashflow issues this would cause to dedicated defence companies. Boeing might not be as aggressive in the pricing for the kind of smaller order that HX represents, but they are likely the only company that even has the option.

The question about the lifespan of the program lurks in the background. While admiral Richardson might want to phase out the Super Hornet by 2040, there is currently no sunset plan for the Super Hornet, and with the NGAD nowhere to be seen, the idea of having replaced the last Super Hornet with a new design in just twenty years sounds impossible rather than improbable. Also, even without any additional Super Hornet orders from the US Navy, the service will accept their last new fighters as late as 2034, and these are unlikely to be phased out in just six years.

EA-18G Growler folding it’s wings following a display flight at last summer’s Finnish Air Force 100-anniversary air show. Source: Own picture

Regardless of the risk to be left alone in the timespan past 2050, what is clear is that the Super Hornet/Growler combo would bring impressive capabilities to the Finnish Air Force. The Growler is also far more versatile than simply being the world’s best SAM-killer (which in itself would be valuable to the Air Force), as it is also an extremely potent ELINT asset with impressive non-kinetic capabilities. The ability to ‘listen to’ or jam different signals as the need arises without firing shots in anger could prove very useful in countering a “gray” or “hybrid” scenario. In US service, the Growlers are seen as a “truly joint aircraft”, able to assist and support not only other combat aircrafts, but ground and sea forces as well. As such it is able to shape the electronic battlefield, and is expected to be operating closely with F-35s of all branches in case of a peer- or near-peer conflict.

Enough power.

The answer to what makes the Growler unqiue in the EW-role

The secret sauce is simple, the Growler sports two of the same F414-engines that propel the single-engined 39E/F Gripen, giving plenty of raw power to the EW-suite, including jammers. The aircraft is also described as “by far the most winter-qualified” of all HX-contenders, which is a statement I guess some of the other contenders might want to fight. The same goes for the notion that the sensor fusion on the Block 3 is “exactly the same capability” as that of the F-35. What is objectively clear though is that the Super Hornet currently sports the best availability numbers of all US tactical jets, and Boeing is happy to assure Finland that not only can all maintenance and upgrades be done locally, but it is also possible to build the F/A-18E/F Super Hornet locally if Finland so wishes. Still, it does sound like Boeing isn’t as keen on the idea of a local assembly line as Saab is.

Kaskeala also points out that the current buying wave of F-35s is made up of F-16 operators. Australia is indeed the sole export customer that is switching from the ‘legacy’ Hornet to the F-35A, and they are in turn a bit of an outlier in that they operate both the Super Hornet and the F-35A. Last time around Finland identified a different need compared to e.g. Denmark and Norway, and went with a different fighter. Will the same be true this time around? What is obvious to any observer is that the legacy of the Hornet-deal is strong in Boeing’s organisation. Boeing is able to host press conferences in Finnish, thanks to the fact that not only their local advisors but key persons inside the company speak Finnish as their mother tongue. It is also evident that Boeing understands how Finland works, both as a society and as a customer. Of the companies involved in HX, only Saab comes close with their local organisation having a relatively large footprint on the ground in Finland and with the Swedish way of doing business being very similar to the Finnish one. While cultural differences in theory shouldn’t affect the outcome of HX, at the end of the day everyone involved are still just humans, and it is hard to shake the feeling that Boeing and Saab have a nonquantifiable but significant advantage in this field.

Rafale B undergoing cold-weather testing in the last week of January. Source: Finnish Air Force FB

Dassault has kept a low profile in media, but in late January Dassault sent a single Rafale B up to the home base of Lappi Fighter Wing for a week of cold weather testing. Ostensibly this was just normal company testing, but it is hard not to think that the choice of location was dictated by a willingness to show the aircraft to a potential customer. In any case, the 30-person big testing team is said to have been happy with both the tests and their stay at the air force base.

ESSM for the Pohjanmaa-class

Yesterday the Finnish MoD announced that the RIM-162 Evolved SeaSparrow Missile (ESSM) has been chosen as the main air defence weapon for the upcoming Pohjanmaa-class corvettes.

The weapon systems already acquired for the Pohjanmaa-class include Torped 47 ASW-torpedoes (Sweden), Gabriel anti-ship missiles (Israel), and ESSM surface-to-air missiles (USA). Source: Finnish MoD

The DSCA cleared the ESSM for export already a year ago, and crucially this was for the quad-packed Mk 25 launcher. This is fitted into the Mk 41 VLS launch system, which is a module of eight box-shaped shafts in which the missiles are stored until launch. The Pohjanmaa-class will be the smallest operational vessel fitted with the system by some margin (Taiwanese test bed LCC-1 Kao Hsiung is roughly same size), and interestingly enough it seems the full strike-length cells will be fitted.

This will give the corvettes a total of 32 ESSM per vessel (the astute observer will notice that the DSCA request only cover 68 missiles, meaning that further orders are to be expected), a significant upgrade in both range and numbers compared to the Hamina-class. While the Hamina’s Umkhonto have an IR-seeker, the ESSM have a passive radar seeker, which gives better performance in bad weather. When it comes to active versus passive radar seekers, unlike the situation in air-to-air combat where requiring the launching platform to keep it’s radar on target conflicts with the need to evade incoming fire, on a surface ship it isn’t necessarily as much of a problem as the radar stays active in a 360° search sector throughout the engagement.

Range is another major factor. The increase in range from 12 to 50 km gives a 17 times greater theoretical area covered. It has also been announced that the vessels, both as sensors and as shooters, will be integrated as part of the joint air defence network of the Finnish Defence Forces. This will give a significant boost to the air defences around the southern coastline, a key area for the country due to its concentration of population centres, ports, and heavy industry. This would be of particular importance in the early stages of a conflict, where the ground based systems of the Army might not have had time to deploy in the field.

The Mk 41 also allows for significantly larger missiles to be used, including the Standard-family of the US Navy and land-attack weapons such as the TLAM. However, with only eight available cells per corvette, swapping out a quad-pack of ESSM for a single longer-ranged SAM has serious effects on the ability of the vessel to fend off prolonged attacks. The Mk 41 could be used as a platform for missile defences to target systems such as the Iskander. E.g. Denmark is planning on doing this, but this would effectively tie up our limited number of corvettes in point defence missions along the southern shore.

An important factor in the choice was likely the widespread use of the Mk 41 and ESSM-combination, which ensure the ability to quickly fill up stocks if the need arises (i.e. we can hopefully get more missiles from US or even Norwegian stocks if we get dragged into a war).

The choice of ESSM will also have indirect effects on the Army’s GBAD program for a medium-range SAM-system. The inability of MBDA to secure a naval CAMM-order from Finland will likely impact the chances for the same missile on land as well. The NASAMS-compatible AMRAAM-ER in turn got a further boost, as it share some parts commonality with the ESSM (the ESSM can also be fired from the NASAMS launcher, though it is dubious if the Army wants a passive seeker head). Overall, MBDA has had a surprisingly hard time in securing any kind of orders in Finland. Time will tell if HX changes this.

On a final note, it is nice to finally see the MoD and Navy fully switch to referring to the vessels as the Pohjanmaa-class. The name has been known for quite some time, and in building a connection between the general public and the project it certainly has a nicer ring to it than the formal Squadron 2020.

The Iskander Threat

Few modern weapon systems have the power to captivate popular imagination the way the Iskander does. Partly this stems from the lack of a clear specification, both for operational security reasons and because the system violates the (recently deceased) INF-treaty. Another reason for the allure is that the system represents a new capability, which so far has not been found in the Russian (nor in too many other countries’) arsenal, and lastly but not least the simple fact that it can carry nuclear warheads.

Iskander-M being launched. Source: Mil.ru via Wikimedia Commons

In addition, there is widespread confusion amongst non-defence geeks about how exactly the Iskander and other ballistic missiles differ from the more widespread cruise missiles, and how to defend against enemy Iskander-attacks. This blog will strive to sort out some of these misconceptions, and give a picture of how the Iskander threat should be evaluated.

The basic Iskander, Iskander-M, is a ballistic missile. For those into the details, the system’s official GRAU designation is 9K720 while the missile itself is designated 9M723. The word “ballistic” means that the missile roughly follows a ballistic trajectory, i.e. the path an object would take if you would throw it. A big rocket engine propels the Iskander up in the air, after which it will fall down onto the target. It isn’t a pure ballistic trajectory, the missile is guided and can make course changes, but it can’t e.g. regain height once it has started diving.

As said, the exact performance is shrouded in secrecy. The most often quoted figures is a range of 400-500 km, and a warhead of 700 kg. However, professor Stefan Forss already in 2012 noted that the official numbers doesn’t quite add up, and calculated a range of 500-750 km, while also noting that some Russian sources “could imply a heavy penetrating warhead weighing about 1,300 kg.” Note though that 700+ km ranges aren’t possible with such a heavy warhead in current configuration (the range calculations were made based on a 400 kg nuclear warhead). The missile likely has a CEP better than 10 meter under ideal circumstances, i.e. half of the missiles will fall within that distance of the target. A 700 kg warhead hitting within 10 meters, especially considering the kinetic energy of the approaching missile, does make the weapon viable to use against individual buildings with a conventional (i.e. non-nuclear) warhead, something which was not the case with Cold War missiles such as the SCUD or Tochka. However, like the earlier missiles, the Iskander is only capable of attacking fixed targets.

It is obvious that if you are supposed to reach a target hundreds of kilometers away with a ballistic trajectory you will need to go fast or high, preferably both. This is what makes shooting down ballistic missiles so hard. The Iskander missile dives towards the target at speeds of 2-3 kilometer per second. Trying to shoot down a maneuvering target falling towards the earth at eight times the speed of sound is extremely difficult, and require a very fast missile placed close to the target of the Iskander. The Patriot system does feature missiles capable of intercepting Iskanders (though their efficiency is questioned), and this is what the Swedish Army is in the process of acquiring. Needless to say, the capability doesn’t come cheap: the Swedish deal is valued at 2-3 billion Euros, which will give four batteries with anti-ballistic missile and anti-aircraft missiles.

However, the Iskander isn’t exactly cheap either. A missile brigade, there are ten to twelve in total in the Russian Armed Forces, feature twelve launchers meaning that the opening salvo of all Russian operational Iskanders would have a hard cap of 288 missiles. This would likely be lower as 100% availability is usually restricted to utopia and all brigades wouldn’t be directed against a single target anymore than all armoured brigades would.

Now, a hundred unstoppable conventional warheads raining down on Finland would cause issues. Targeting strategic sites such as bridges, headquarters, utilities such as power and water plants, would very quickly make things complicated. However, this is not in and by itself a war-winning weapon. Granted there could be a second wave, possibly even a third, but the supply of missiles aren’t endless. High-end weapons comes with a cost, even if you’re trading in rubles. In the end destruction caused by traditional air strikes coupled with cruise missiles will quickly become a bigger issue.

MiG-31 with Kinzhal air-launched ballistic missile at the Moscow Victory Day parade 2018. Source: Wikimedia Commons

A short note on the Kh-47M2 Kinzhal. This is a large missile carried by the MiG-31 heavy fighter. It is part of the family of recently unveiled Russian “super-weapons” aimed at ensuring a Russian nuclear deterrent in the face of developments when it comes to missile defences. The Kinzhal seems to be a modified version of the Iskander-M missile, which thanks to higher launch speed and height gives it a range of over 800 km (1,000 to 3,000 km is often quoted, but it seems that these numbers include the combat range of the aircraft). Kinzhal seems to be a more realistic option compared to several other of the unveiled systems, but exact specifications and whether Russia will field a conventionally armed version are still unclear.

Cruise Missiles

Cruise missiles are a completely different breed of beasts. They are in essence unmanned aircraft carrying a warhead to a target. The size, range, operating methods, launching platforms, and warhead types varies, but in essence they have an engine and wings to allow them to fly long distances, and then crash into whatever their target is. Often the cruise missiles fly towards their targets at very low altitude, using the terrain to mask their approach. The Finnish Air Force operate the AGM-158 JASSM cruise missile, while the Navy’s current and upcoming anti-ship missiles both exhibit similar traits (it is largely a question of nomenclature/taxonomy rather than any practical differences if anti-ship missiles should be counted amongst cruise missiles or as a detached family of their own).

The firing unit of the NASAMS, sporting six canister mounted AIM-120 AMRAAM missiles. Source: Maavoimat FB

Now, as the cruise missile flies like an aircraft towards its target it can also be shot down like one, using the regular means of fighters and ground based air defences. Cruise missiles can make tricky targets due to their low altitude, speed, and (in some cases) stealthiness, but a modern SAM-system such as the NASAMS of the Finnish Army should have no problem in bringing down one, provided it is located in the appropriate spot.

As opposed to ballistic missiles, cruise missiles have shown a nasty tendency to proliferate. In part this is due to the low(er) cost compared to modern ballistic missiles of the same class as the Iskander. The most famous example of a modern Russian cruise missile is the 3M14 Kalibr land-attack missile (think Tomahawk/TLAM), which sports a range of 2,000 km and comes in at a unit cost of 1.1 million Euro. The weapon is officially in use aboard a number of modern Russian warships (including submarines), and likely it is this very missile that is carried by the Iskander-K under the designation 9M729. Yes, confusingly enough there is both a ballistic missile-carrying version of the Iskander and a cruise missile-carrying version. Generally, if people refer to something simply as the “Iskander”, it is the ballistic missile-carrying Iskander-M they mean.

The 9M729 is also at the centre of the INF-controversy which led to the US declaring the treaty void (INF doesn’t cover sea-based missiles, but as soon as the Kalibr was brought ashore it became illegal under the INF-treaty).

An Iskander-K with one of it’s two cruise missile containers raised. Source: Vadim Grishankin via Wikimedia Commons

If it is the unstoppable nature of the ballistic missile that makes the Iskander-M a threat, it is the large number of missiles coupled with the vast range that makes the Kalibr/Iskander-K one. Finland is within range of the Kalibr of both the Baltic as well as the Northern Fleet, where the vessels of the Northern Fleet effectively are beyond the reach of the anti-ship weapons of the Finnish Defence Forces.

Conclusions

The Iskander-M is a threat. So is the Kalibr/Iskander-K and other cruise missiles. However, they have very little common with each other, besides the fact that they transport warheads into enemy territory (as does strike aircraft). Phrases such as “the ability to defend against Iskander and Kalibr-missiles” are sometimes thrown around as if they are referring to a single capability, when in fact they are vastly separate issues. We already have the capability to defend against cruise missiles in all three services, with weapons such as the NASAMS, Umkhonto, and the AIM-120 AMRAAM. Acquiring point-defence capabilities against the Iskander for four possible targets would be a project comparable in cost to two Squadron 2020-projects. Not vessels, but two complete projects of eight vessels in total. As such, it is hard to argue with the official Finnish position that we’ll simply have to disperse and be prepared to suffer a number of Iskander hits, while at the same time investing further in medium-range air defence capabilities to defend against cruise missiles and enemy aircraft. The combination of Squadron 2020, HX, and the Army’s new GBAD-program will make the skies over Finland much deadlier for an attacker in the upcoming decades. Just not for their ballistic missiles.

Guest Post: An Unreasonable Brigade Artillery

A few weeks ago a blog post discussing Swedish artillery at the brigade level caught my eye. As I noted last year,Finland is looking at the retirement of a significant portion of our brigade level assets in the near future, and which system should replace these is far from obvious. The post by Öhman was also of the kind of outside the box thinking I like to bring forward, so I contacted him and asked for permission to run an English translation. The translation is my own, and all faults when it comes to jargon are my own work as well.

The author Peter Öhman is a Swedish officer with a solid knowledge of anything armour or artillery who currently works at the Swedish Defence Material Administration. You will find him on Twitter and on his blog.

In a future growing Army there are many who feel that Haubits 08 ‘Archer’ would be optimally used as a divisional asset. It is a sensible idea which has been discussed in many places, but which won’t be developed further here.

With Haubits 08 as a divisional asset there would appear a void on the brigade level, as we don’t have any towed Haubits 77 mothballed. What should then be the remedy?

If one looks at the different requirements for a brigade-level artillery system they could look something like this:

  • Instantaneous firepower that allows a unit of size X to fire a fire mission in under 10 seconds,
  • Accuracy that allows the fire mission to hit the target location,
  • The ability to maintain sustained fire for X amount of time,
  • Protection which allows the artillery unit to operate together with the rest of the brigade,
  • Mobility which allows the artillery unit to move with the brigade’s battle,
  • High availability.

In practice this means that the artillery piece must have a certain rate of fire, especially initially. The ability to sustain fire over time is created by bringing lots of ammunition, having the ability to reload rapidly, having an efficient logistics chain, and sporting a high resistance to the barrel heating.

Protection means protection against shrapnel, but also signature reduction and the ability to rapidly move to a new position after firing. When discussing mobility it is easy to get dragged into a discussion about tracks or wheels, which is a balance between the ability to quickly transfer between battalions and cross-country mobility to reach suitable firing positions in the terrain. Very few today consider using towed pieces, due to the longer time to get them into position.

High availability may be technical reliability, but it may also be based on mobility, and perhaps most of all range.

As the requirements are broken down into details, sooner or later the question about what calibre should be used will become the topic of the day.

Of what calibre should a future system be?

155 mm is of course the NATO-standard and a calibre which has been working well since at least the Second World War. We can’t abandon a NATO-standard by ourselves, and we have old ammunition stocks which we need to be able to use. That’s how easy the analysis can be. Now is when I will be unreasonable and question this train of thought. Is 155 mm really an obvious choice for supporting the fighting formations of a brigade? The following text should be treated as something of a “military satire”.

If we look at the specifications for a number of common artillery systems in 152 and 155 mm we get the following table:

SystemWeight (t)Range (km)Am. carriedShots/minLengthCrew
2S194224.7506-8L/475
K-94730526-8L/525
M109A73524394L/394
PzH 200056306010L/525
Haub 0833.530218-9L/522-4

Ranges given are for standard rounds, i.e. not including base bleed or similar technologies.

When looking at even large calibers such as 203 mm the big benefit of 155 mm is that it is easier to handle both for humans and machines. A 155 mm shell weighs around 45 kg, compared to at least twice as much for a 203 mm one. The recoil forces are also about twice as big, leading to an unreasonably large gun. The range will also be short unless one want a barrel that is 2.5 m longer than the already long 155 mm L/52 barrels. Big and heavy ammunition also leads to a low rate of fire. The US M110 howitzer with an L/25 barrel has a range of 17 km with standard ammunition. Weighing 28 tons it only carry two rounds. This means a continuous supply of ammunition is required, and even in the best case scenario the rate of fire is around 1 shot/min.

Ukrainian 2S7 Pion in 2017. Source: Ukrainian MoD via Wikimedia Commons

The Russian 2S7 is bigger and weighs a staggering 46.5 ton, have a L/56.2 barrel which gives a V0 of 960 m/s and gives the 110 kg shell an impressive 37.5 km range. However, it only carries 8 rounds and can at best handle a rate of fire of 2.5 shots/min. 2S7 is 13 meters long and has a crew of seven.

These kinds of calibres are unreasonable for highly-mobile artillery that supports the combat units of a brigade, and are better suited to hammering fortifications.

A Finnish 2S1 Gvozdika / 122 PsH 74 during exercise Pohjoinen 18. Source: Maavoimat FB

Eastern countries also employ 122 mm. The most common vehicle is the 2S1 (122 PsH 74 in Finnish service) which fire a 21.7 kg shell out to 15.3 km from a L/36 barrel, it weighs 16 ton, has a crew of four, and carries 40 rounds.

2S34 Khosta on parade. Note the new weapon. Source: Vitaly Kuzmin via Wikimedia Commons

A modernised version of the 2S1 is known as the 2S34 Khosta which sports a 120 mm gun/mortar with a range of 14 km. The same gun is found in the 2S31 Vena which carries 70 rounds and weighs 19.5 tons.

Swedish 12/80 coastal artillery gun. Source: Marinmuseum via Wikimedia Commons

In Sweden we had the 12/80, a 120 mm version of Haubits 77. With a L/55 barrel it had the same range with load 2 that the L/38 Haubits 77 had as its maximum range.

Calibre 105 mm is something that usually has been found on the battalion level. An example of a modern system is Hawkeye which is based on the HMMWV. The weight is just 4.4 ton. With a L/27 barrel is has a range of 11.5 km with a 15 kg shell. According to one source 8 rounds are carried.

105/50 coastal defence gun of the Arholma Battery. Source: Patrik Nylin via Wikimedia Commons

There are also long-ranged 105 mm systems. The Swedish turreted automatic 105/50 with L/54 barrel had a range of 20 km. It is especially interesting that a number of other countries still cling to and develop 120 mm-class guns. I will therefore make a comparison between 120 and 155 mm weapons when it comes to a few specifications I regard as critical for brigade artillery.

Range, less is more!

Upon a quick comparison 155 mm seems to have the edge when it comes to range. 15.3 km from a L/36 barrel compared to 24 km from an L/39 when comparing 2S1 and M109. However, 2S1 uses a rather modest 3.8 kg powder charge to reach a V0 of 680 m/s and 15.3 km. At the other end of the spectrum, Swedish 120 mm Tornautomatpjäs 9101 (12/70) uses a L/62 barrel to reach 27 km with a V0 of 880 m/s. The earlier mentioned 120 mm 9501 (12/80 Karin) can reach 21.1 km with charge no 2 with a V0 of 800 m/s. 155 mm guns with a 800 m/s V0 can reach around 22 km, meaning that the difference is rather small. 120 mm as a calibre has good ballistic properties. With a barrel length of around L/50 a 120 mm gun will use 5-6 kg and a 155 mm one 12-15 kg of powder to reach a V0 of 800 m/s. A 120 mm L/62 is also 60 cm shorter than a 155 mm L/52. In other words a rather small potential edge in range for the 155 mm is balanced against having a long barrel that’s still easily handled for the 120 mm.

Another aspect of the range question plays a major role in the discussion, and this is where less is more. The fact is that when the range approaches or pushes beyond 20 km, the shells will follow a trajectory that is so high, and spend such a long time airborne that the weather makes accuracy unacceptably poor. The reason is partly because it becomes hard to reach the desired effect without ranging shots and/or the need for additional rounds in target, and partly because the increased dispersion increases the danger for the friendly units one tries to support. Base bleed and rocket assisted projectiles (RAP) which are used to increase the ranges also further diminish accuracy and increase cost. To counter this increase in dispersion once the range is edging towards 40 km technical aids such as precision-guided rounds and course correcting fuzes are used. These are very expensive, and ill-suited to the massed fires required to support ground combat. Firing at ranges between 30 and 40 km also has other consequences. At least double the gas pressure and V0 close to 1,000 m/s leads to increased strain on the equipment and faster wear. My opinion is that if the laws of physics makes it a bad, or at the very least an expensive, idea to use supporting fires at ranges above 20 km, then we shouldn’t invest too much money and effort into such a capability for systems acquired to support ground combat. To reach 20+ km 120 mm is plenty enough.

Effect

Presume a fire mission of 24 155 mm rounds would be replaced by a single round with the same weight of just over 1,000 kg in the middle of the target area. It is obvious that the effect would be poor in the majority of the target area and unnecessary good close to the giant round. Ordinarily one strives to spread the effect evenly over the whole target area. Case in point being the use of submunitions. Before the Convention on Cluster Munitions there was even a project on introducing 120 mm mortar rounds with submunitions, and in Russia who doesn’t give a damn about the ban on submunitions their use is increasing. Against fortified targets heavier rounds do however maintain the edge.

The 122 mm D-30 howitzer remains the mainstay of Finnish battalion indirect fire assets. Source: Maavoimat FB

In a comparison between a big bang and thousands of submunitions one can compare the weights of 24 rounds of 155 mm, 45 rounds of 120 mm, and 72 rounds of 105 mm. The superior effect would in this case come from 72 rounds of 105 mm. A good indication is that a Swedish fire mission of 24 120 mm mortar rounds is treated as the equal to 18 155 mm rounds. The weight of a mortar round is in fact more closely equal to that of a 105 mm howitzer round. The effect of a single 120 mm howitzer round matches very closely that of a 155 mm one. The issue is that one reaches further with a heavy round, but preferably would split it up in many smaller units when reaching the target area to get superior effect. As long as we uphold a ban on submunitions the importance of choosing a calibre that gives good effect in the target increases. Scientific advances also make it possible to fit a seeker in smaller rounds than before, though it would be difficult to get as good effect e.g. out of a 120 mm BONUS-round as out of a 155 mm one.

Logistics

To compare the logistics footprint I make the assumption that 24 155 mm rounds equals 30 120 mm rounds when it comes to effect. A complete 155 mm round has a weight of around 60 kg, made up of a 45 kg shell and a 15 kg charge. Similarly, a complete 120 mm round weighs around 32 kg, of which 25 kg is the shell and 7 kg the charge. The fire mission of the 120 mm gun would then come in at two-thirds the total weight of the 155 mm fire mission. If you include a casing to allow for the automatic handling of the ammunition a complete 120 mm round comes in at approximately 40 kg, meaning the fire mission is just 83% of the weight of the 155 mm one. However, fixed ammunition require more space, and the 120 mm fire mission with fixed ammunition will take up approximately 20% more space. However, comparing against fixed 155 mm ammunition the latter will weigh 70% more and take up 40% more space. The benefit of fixed ammunition is that in the same way as with Bkan and 120/80 it is possible to have a higher degree of automation when firing and handling the rounds. This in turn leads to a higher rate of fire and better effect in target. The conclusion is that with fixed 120 mm ammunition you get a similar logistic footprint, but with a round that is more easy to handle and you will be able to get off more rounds which will give as good or better effect in target compared to 155 mm. In real terms, a full charge 120 mm round with a fixed casing will weigh less than 40 kg, and can easily be carried from vehicle to vehicle by a single soldier. A 155 mm round with a fixed casing will come in at 85 kg and will need two persons to carry it, not the least due to the uneven weight distribution. If an autoloader could use the kind of combustible casings that tank rounds use, it should be possible to shave a few additional kilograms of the 120 mm round.

Bkan 1 with the original loader. Note the size of the 155 mm fixed ammunition in the loading frame.

Autoloading versus manual

To achieve good effect in target a high rate of fire is a good tool, and to reach a high rate of fire the ammunition and its handling plays a big role. 155 mm howitzers usually have a rate of fire that varies between 3 to 10 rounds per minute with separate loading ammunition. These are usually either completely manual or equipped with different kinds of automatic handling and loading aids. Some have the ability to fire off a few quick rounds, before settling in for a lower sustained rate of fire. E.g. Haubits 77A was able to fire three shots in less than ten seconds. This is possible as the charges are put in a casing, which allows for the use of a very quick vertically sliding breech block. The shell and the casing is then loaded with a hydraulic rammer. To fire really quickly fixed casings are needed. E.g. Bkan 1 has a technical rate of fire of 18 rounds/min. The 12/80 is another example albeit with 120 mm calibre. With an autoloader the 12/80 fires off 16 rounds/min. There are even faster Swedish guns. 120 mm anti-aircraft gun 4501 has a rate of fire of no less than 80 rounds/min. The 23 ton heavy gun carries 52 rounds.

12 cm Lvakan 4051

Another Swedish rapid-firing gun, although in 105 mm, is the Strv 103. As far as I remember, the technical rate of fire is 26-27 rounds/min and the tank carries 50 rounds. To note is that the sole 155 mm field artillery piece amongst these was the Bkan 1. The reason behind this is, amongst other things, that the mechanism becomes large and heavy. It is also unable to bring along more than 14 rounds. This is likely one of the reasons why modern 155 mm guns almost universally have separate loading munitions. The second, and perhaps even more important issue, is that one wants to be able to set the charge size for each round, and not be limited to a pre-set number of each charge that is set already when the ammunition is manufactured. In 120 mm it should however be possible to benefit from the carefree handling of fixed ammunition and bring more rounds, without the rounds becoming overly large.

Autoloaders is however not an end in itself, except when it comes to the firing. As mentioned earlier, 120 mm is considerably easier to move by hand. This includes fixed case 120 mm ammunition, which thanks to its below 40 kg weight can be moved in the same way ammunition was replenished in Strv 103.

Will there be something else than 155 mm if we buy a new system?

I have a hard time believing that, 155 mm is in all essence even more standard than 7.62 mm. That is why I describe this as an unreasonable brigade artillery. If one would start from a clean sheet, it is however entirely possible that with the technological advances of today the conclusion would be that another calibre would be better suited for supporting the brigades. Perhaps based on some of the reasoning found above.

But we just have to accept that we do not begin with a blank sheet, instead there are several limiting factors that affect the outcome. At the same time, evident truths need to be questioned every now and then. E.g. the miniaturisation of electronics allow for ever smaller rounds to become “smart”. If the reasoning behind 155 mm was the need for precision guided munitions the choice of calibre could be reevaluated now. However, over time factors such as standardisation have become important and will lead to the continued use of 155 mm.

Are we in the West looking for the right capabilities?

As a short sidetrack to the discussion on calibre choice I would like to touch upon two topics that I believe are receiving too much attention: the race for range and extreme precision.

With each new gun there are new solutions to push the range out even further, from L/39 barrels to L/52 as the new standard, and now barrels out to L/58 are discussed even for guns such as the M777.

M777A2 and M777ER with L/52 and L/58 barrels respectively. Source: US Army

Base bleed, RAP, and ramjet projectiles are other ways of reaching further. It is easy to see the benefit of reaching longer, and easy to quantify range as a requirement or selling point, which is why it is often in the spotlight. But range threatens to become the “24 cm higher cabin” of the artillery, an extreme cost driver. Longer range also places indirect requirements on extreme accuracy, no longer is just “rather accurate” good enough. The technology behind the increased accuracy is and will continue to be expensive. This means that the ammunition used to fire far away and with high accuracy becomes too expensive to use for massed fires. The most extreme example is the 155 mm guns of the Zumwalt-class which were supposed to receive rounds capable of reaching 153 km. The price tag became close to 1,000,000 USD/round as opposed to the planned 35,000 USD. The contract was revoked and the destroyers now lack a suitable round for their guns.

There need to be an analysis regarding the missions of individual systems. For a multitool, which is the role one can say that the Haubits 08 has been forced into, long range is a must. If it is a battalion-level asset, the conclusion might be that the 8 km range of a mortar is enough. If the mission is to support the fighting battalions of a brigade, the requirements need to be in sync with those demands, and not necessarily with those of the multitool. Was the reasoning behind the 150 km range of the Zumwalt’s 155 mm guns really correct? Should one have opted for another system if 150 km range was demanded?

The quest for accuracy partly comes from the increased range, but also from some kind of engineering bewitchment for perfection. Accuracy is very nice when the enemy headquarters is located or when the enemy has put their fighting positions close to a hospital. But at the end of the day, artillery is an area effect weapon, and to achieve effect it is enough to hit the target area instead of aiming for the bullseye with every round. I am worried that we in the West is forgetting this. I don’t know how many times I’ve heard “Isn’t it jolly good to have better accuracy, that we can get the same effect with fewer rounds.” I have tried to explain that it is enough to be in the right area and that it is more important to be able to fire large volumes in many places, which increases the odds that the enemy will be suppressed in many different spots. Often the fire mission is based on an estimate on the enemy and the terrain, and not on an observation. If one can see the enemy both we and the enemy can use direct fire, and it is the losses that causes which we wish to avoid. Why then aim for a few expensive bullseyes and completely overlook massed fires? Making this case is often like talking to the wall. I will however persist, gutta cavat lapidem.