HX Shifting Gears

The HX program has shifted gear into the next phase, as all five contenders returned their answers to the first round of the RFQ (for those needing a primer on the process, see this post). As noted all five are still in the race, but a few notable events have taken place.

On the Air Force-side of things, the Chief of Defence (and former Air Force CinC) was quite outspoken in an interview back in December, where he amongst other things highlighted the need for Finland to ensure that we aren’t the sole operator of the HX towards the end of it’s operational life. This is in essence nothing new, it was noted as an issue for the continued operation of the Hornet-fleet past 2030 in the original HX pre-study, and could in all honesty been seen from a mile away. Still, it was felt that the decision to speak openly about one of the key points that set the F-35 aside from the rest of the bunch (i.e. a widespread international userbase which will operate the aircraft as their prime combat aircraft past 2060) was surprising given the continued emphasis on the competition still being wide open. However, given the obvious nature of the issue, I find it difficult to get too excited over the quote.

There will however be some personnel changes, as a scandal has rocked the Air Force with a wing commander being under investigation for less than proper conduct while drunk during an Air Force-sponsored trip with local stakeholders. This has also raised questions about how the investigation has been conducted by his superiors, something which has likely played a part in both the Air Force chief and the chief of defence declining to apply for extensions of their respective terms, instead opting to retire when their current terms are up. This likely won’t affect the HX program in any meaningful way.

F-35C Lightning II from VFA-101 ‘Grim Reapers’ taking off from USS George Washington (CVN-73) during F-35C Development Test III. Picture courtesy of Lockheed Martin, photo by Todd R. McQueen

Back to the F-35, preciously little has come out regarding the offer. This is due to Lockheed Martin not being allowed to comment upon anything, as the offer is made by the US Government. That means we still haven’t gotten confirmation that it is the F-35A that is on offer, leaving the door open for the odd chance that the carrier-based F-35C would be seen as better suitable tp Finnish requirements. That detail will likely become clear soon enough, but in the meantime we can note that the F-35C declared IOC recently, meaning that all three versions of the F-35 now are operational. The F-35B recently finished it’s first combat cruise, and scored a 75% availability rate. That number is perhaps the most impressive metric to come out of the F-35 program during the last year in my opinion, as that availability rate would be acceptable for mature operational fighters operating from their home base. Now it was achieved by a brand new STOVL aircraft operating in combat from a small carrier, clocking twice the hours of its predecessor. While questions surrounding the ALIS and other parts of the program still exist, this is a strong sign of maturity. The F-35 still in many ways remain the fighter to beat for anyone aiming for the HX-contract.

On the opposite side of the spectrum, while the F-35 is still undefeated in combat, it is no longer so on the market. This is following the German decision to drop it from their Tornado-replacement program, where the Eurofighter Typhoon and the F/A-18E/F Super Hornet will now go head to head for the deal. The undoubtedly political decision to drop the F-35 at this early stage has received widespread criticism, including from not one but two former chiefs of the German Air Force (and as opposed to how the HX-debate looks in Finland, both of the generals have recent experience, having retired in 2009 and 2018 respectively). However, the decision isn’t quite as far-out as some would like to make it, as both the Typhoon and the Super Hornet actually hold significant selling points. Crucially, Germany already operate the Typhoon, making it easier to just raise the number of aircraft than to integrate a new fighter. For the Super Hornet, it should be remembered that Germany besides the ground-attack Tornado IDS also operate the SEAD/DEAD-variant Tornado ECR, one of very ‘Wild Weasel’ aircraft currently in service anywhere in the world. And the only modern Wild Weasel aircraft found on the market is the Super Hornet-based EA-18G Growler (we’ll get to that shortly). Will the German decision affect HX? Yes, although mainly indirectly by securing another reference to either fighter, and likely to a lesser extent than another recent German decision.

Germany decided to despite considerable British and French pressure continue to block arms sales to Saudi Arabia over the War in Yemen and the brutal murder of journalist Khashoggi. The actions are certainly correct in my personal opinion, the War in Yemen and the murder were both particularly brutal (even considering the fact that wars and murders in general are brutal), but it also points to a willingness of Germany to pull the brakes on arms exports contrary to the wishes of other major European countries. In itself that isn’t necessary worrying, but Germany has also shown a worrying tendency of running their own show when it comes to relations with Russia (case in point: Nord Stream 2). Taken together, especially when considering Russia’s usual taste for false flag operations and trying to shape the narrative of any conflict, the risk of Germany stalling orders and urging both sides to de-escalate in a potential Russo-Finnish crisis is probably being analysed in Helsinki. It’s hard to quantify the risk (especially with Trump having demonstrated that rapid political swings can take place elsewhere), but it likely didn’t improve the prospect of Typhoon taking home HX.

Italian Eurofighter touching down at Tikkakoski Air Base last summer. Source: Own picture

What might have improved the odds was the Spanish Air Force showing how an operator can both develop their own upgrade path and benefit from cooperation with the other partner countries. In the case of Spain, the country follows the common upgrade path with the Tranche 2 and 3 Eurofighters. At the same time, being unhappy with the roadmap for the Tranche 1 fighters, it has independently embarked on a more ambitious program for those aircraft. The big cloud still hanging over the Eurofighter program is whether any operator will be invested in it as their primary platform up to 2060, or whether they all will have moved on with the upgrade funds of their air forces largely being allocated to whatever comes next.

The second 39E, 39-9, taking off. Picture courtesy of Saab AB

If Lockheed Martin is unable to talk much about their offers, Saab is more outspoken and even flew a bunch of journalists to Sweden to inform them about the offer. The big news was that Saab offers a domestic production line, and that the fleet would be a mix of 52 JAS 39E single-seaters with 12 JAS 39F two-seaters. The Finnish Hornet-order was 57 F/A-18C single-seaters and 7 F/A-18D two-seaters, so this would be a remarkable shift from a ratio of 8:1 to 4:1. While it is well-known that the Finnish Air Force in hindsight would have wanted more two-seater Hornets for the conversion training role, Saab is open with the fact that training needs isn’t the main reason behind the inclusion of a squadron of two-seaters.

Often there are other drivers for and needs of a two-seat aircraft configuration that, in combination with the more traditional training-related benefits, makes it relevant to procure two-seat fighters. 

Magnus Skogberg, program Director of Saab’s HX-bid

In essence this means that Saab is arguing that the needs of the Finnish Air Force is best met by a squadron of two-seaters backing up the single-seaters for certain missions, while at the same time the two-seaters can obviously provide benefits for the OCU-mission i peacetime. The 39E and 39F are more or less similar, with the cockpit setup being the same in the front and rear cockpits of the 39F, as well as in the sole cockpit of the 39E. This means that all will be equipped with the same wide-angle display that will be found in both Swedish and Brazilian fighters. Any Finland-specific details, configurations, or equipment will also be the same for both versions. The only major difference is that the 39F does not feature the internal gun. Both versions sport an onboard electronic warfare system, which include electronic attack capabilities, and which can be further supplemented by podded jammers and sensors. This is where the second crewman comes into the picture, as there’s a real risk that the human brain will run out of bandwidth before the options of the EW-system does.

Gripen F with its two seats, naturally provides additional flexibility to handle very advanced missions where it may be advantageous to have an additional pilot or operator on-board. Examples are Electronic Warfare Officer, Mission Commander and/or a Weapon System Officer in the rear-seat.

Magnus Skogberg, program Director of Saab’s HX-bid

The same can be said for advanced long-range strike missions, and in the air-to-air role the use of modern data links even makes it possible to have an aircraft with the backseater working as something akin to the Fighter Allocator of an AWACS, concentrating on staying up to date with the situational picture and issuing orders to other airborne friendly fighters. Is there a benefit of moving the fighter controller from the ground to the backseat of a fighter? Possibly, in general the Finnish Defence Forces likes to have the one calling the shots to be situated close to the action, though the benefit is likely smaller than when it comes to EW and strike missions. While Saab maintains that two-seaters offer significant flexibility in multiple roles, it seems that the main focus is on the 39F as a SEAD/DEAD asset.

The EA-18G Growler in flight. Note the size of the AGM-88 HARM anti-radiation missile under the left wing compared to the AIM-120 AMRAAM missiles under the air intakes. Picture courtesy of / All rights reserved – Boeing / Aviation PhotoCrew

Boeing is in essence bound by the same non-disclosure issues as Lockheed Martin. However, they have managed to get permission to discuss some aspects of their offer, and happily fill in any blank spots by referencing how the US Navy (and to a lesser extent the other flying services) perform their mission. The big deal was that Boeing is now officially offering not only the F/A-18E/F Super Hornet in the most modern Block 3 configuration, but the EA-18G Growler dedicated SEAD/DEAD version as well (though ‘dedicated’ should be interpreted carefully, as it can do everything the F/A-18E/F can do, with the exception of sporting two wingtip short-range air-to-air missiles). Boeing could not speak about the Super Hornet/Growler ratio to Finland, but notes that on a US carrier it is currently 44 Super Hornets to 5-7 Growler, with the intention being to raise that to 10-12 Growlers. In the case of Finland, that would mean 10 to 15 Growlers out of the total of 64 fighters.

Boeing isn’t one to downplay the importance of this move. The release for export took place in extremely short time (comparisons to the ~10 years it took to clear the AGM-158 JASSM were made), and this is a tangible example of the strong Finnish-US bilateral bond when it comes to national security. A bond which kicked off in earnest with the acquisition of the F/A-18C/D ‘legacy’ Hornet back in the 90’s (though you might argue that correlation doesn’t equal causation here, as it also coincided with the end of the Cold War). The US sees a Finnish acquisition of modern airborne capabilities as another way of improving stability around the Baltic Sea through improving Finland’s conventional deterrence. The Growler would add significantly to Finland’s “Tröskelförmåga“, threshold capability, as senior advisor (and retired admiral) Juhani Kaskeala explained using the Swedish word, and as such is nicely in line with US strategic interests.

You can trust the Super Hornet

Juhani Kaskeala, senior advisor at Blic

The Super Hornet Block 3 may be one of the most advanced versions of any fighter available, but Boeing also makes an important point of the fact that all cards are already on the table. They know “exactly” what it costs to operate the fighter, a sum which is lower than that of Finland’s current Hornet’s despite the Super Hornet being heavier, and they know how many hours they can get out of any given aircraft. The current lifespan is 10,000 flight hours per aircraft, compared to just 6,000 flight hours of the legacy ones (Finland has experienced issues reaching that number, due to the larger proportion of heavy-G air combat maneuvers flown by the Finnish Air Force). Boeing’s package is within the budget of the program, though they aren’t able to comment upon the cost of the package in any detail. The question of cost is interesting, as Boeing has gone three for three in the last major US defence contracts (T-X, MH-139, MQ-25), in a move that has largely been described as Boeing buying the deals. What you lose on the swings, you make up for on the roundabouts, and the fact that Boeing in essence is the world’s largest civil aviation business with a sizeable defence division makes it able to manage the cashflow issues this would cause to dedicated defence companies. Boeing might not be as aggressive in the pricing for the kind of smaller order that HX represents, but they are likely the only company that even has the option.

The question about the lifespan of the program lurks in the background. While admiral Richardson might want to phase out the Super Hornet by 2040, there is currently no sunset plan for the Super Hornet, and with the NGAD nowhere to be seen, the idea of having replaced the last Super Hornet with a new design in just twenty years sounds impossible rather than improbable. Also, even without any additional Super Hornet orders from the US Navy, the service will accept their last new fighters as late as 2034, and these are unlikely to be phased out in just six years.

EA-18G Growler folding it’s wings following a display flight at last summer’s Finnish Air Force 100-anniversary air show. Source: Own picture

Regardless of the risk to be left alone in the timespan past 2050, what is clear is that the Super Hornet/Growler combo would bring impressive capabilities to the Finnish Air Force. The Growler is also far more versatile than simply being the world’s best SAM-killer (which in itself would be valuable to the Air Force), as it is also an extremely potent ELINT asset with impressive non-kinetic capabilities. The ability to ‘listen to’ or jam different signals as the need arises without firing shots in anger could prove very useful in countering a “gray” or “hybrid” scenario. In US service, the Growlers are seen as a “truly joint aircraft”, able to assist and support not only other combat aircrafts, but ground and sea forces as well. As such it is able to shape the electronic battlefield, and is expected to be operating closely with F-35s of all branches in case of a peer- or near-peer conflict.

Enough power.

The answer to what makes the Growler unqiue in the EW-role

The secret sauce is simple, the Growler sports two of the same F414-engines that propel the single-engined 39E/F Gripen, giving plenty of raw power to the EW-suite, including jammers. The aircraft is also described as “by far the most winter-qualified” of all HX-contenders, which is a statement I guess some of the other contenders might want to fight. The same goes for the notion that the sensor fusion on the Block 3 is “exactly the same capability” as that of the F-35. What is objectively clear though is that the Super Hornet currently sports the best availability numbers of all US tactical jets, and Boeing is happy to assure Finland that not only can all maintenance and upgrades be done locally, but it is also possible to build the F/A-18E/F Super Hornet locally if Finland so wishes. Still, it does sound like Boeing isn’t as keen on the idea of a local assembly line as Saab is.

Kaskeala also points out that the current buying wave of F-35s is made up of F-16 operators. Australia is indeed the sole export customer that is switching from the ‘legacy’ Hornet to the F-35A, and they are in turn a bit of an outlier in that they operate both the Super Hornet and the F-35A. Last time around Finland identified a different need compared to e.g. Denmark and Norway, and went with a different fighter. Will the same be true this time around? What is obvious to any observer is that the legacy of the Hornet-deal is strong in Boeing’s organisation. Boeing is able to host press conferences in Finnish, thanks to the fact that not only their local advisors but key persons inside the company speak Finnish as their mother tongue. It is also evident that Boeing understands how Finland works, both as a society and as a customer. Of the companies involved in HX, only Saab comes close with their local organisation having a relatively large footprint on the ground in Finland and with the Swedish way of doing business being very similar to the Finnish one. While cultural differences in theory shouldn’t affect the outcome of HX, at the end of the day everyone involved are still just humans, and it is hard to shake the feeling that Boeing and Saab have a nonquantifiable but significant advantage in this field.

Rafale B undergoing cold-weather testing in the last week of January. Source: Finnish Air Force FB

Dassault has kept a low profile in media, but in late January Dassault sent a single Rafale B up to the home base of Lappi Fighter Wing for a week of cold weather testing. Ostensibly this was just normal company testing, but it is hard not to think that the choice of location was dictated by a willingness to show the aircraft to a potential customer. In any case, the 30-person big testing team is said to have been happy with both the tests and their stay at the air force base.

Advertisements

ESSM for the Pohjanmaa-class

Yesterday the Finnish MoD announced that the RIM-162 Evolved SeaSparrow Missile (ESSM) has been chosen as the main air defence weapon for the upcoming Pohjanmaa-class corvettes.

The weapon systems already acquired for the Pohjanmaa-class include Torped 47 ASW-torpedoes (Sweden), Gabriel anti-ship missiles (Israel), and ESSM surface-to-air missiles (USA). Source: Finnish MoD

The DSCA cleared the ESSM for export already a year ago, and crucially this was for the quad-packed Mk 25 launcher. This is fitted into the Mk 41 VLS launch system, which is a module of eight box-shaped shafts in which the missiles are stored until launch. The Pohjanmaa-class will be the smallest operational vessel fitted with the system by some margin (Taiwanese test bed LCC-1 Kao Hsiung is roughly same size), and interestingly enough it seems the full strike-length cells will be fitted.

This will give the corvettes a total of 32 ESSM per vessel (the astute observer will notice that the DSCA request only cover 68 missiles, meaning that further orders are to be expected), a significant upgrade in both range and numbers compared to the Hamina-class. While the Hamina’s Umkhonto have an IR-seeker, the ESSM have a passive radar seeker, which gives better performance in bad weather. When it comes to active versus passive radar seekers, unlike the situation in air-to-air combat where requiring the launching platform to keep it’s radar on target conflicts with the need to evade incoming fire, on a surface ship it isn’t necessarily as much of a problem as the radar stays active in a 360° search sector throughout the engagement.

Range is another major factor. The increase in range from 12 to 50 km gives a 17 times greater theoretical area covered. It has also been announced that the vessels, both as sensors and as shooters, will be integrated as part of the joint air defence network of the Finnish Defence Forces. This will give a significant boost to the air defences around the southern coastline, a key area for the country due to its concentration of population centres, ports, and heavy industry. This would be of particular importance in the early stages of a conflict, where the ground based systems of the Army might not have had time to deploy in the field.

The Mk 41 also allows for significantly larger missiles to be used, including the Standard-family of the US Navy and land-attack weapons such as the TLAM. However, with only eight available cells per corvette, swapping out a quad-pack of ESSM for a single longer-ranged SAM has serious effects on the ability of the vessel to fend off prolonged attacks. The Mk 41 could be used as a platform for missile defences to target systems such as the Iskander. E.g. Denmark is planning on doing this, but this would effectively tie up our limited number of corvettes in point defence missions along the southern shore.

An important factor in the choice was likely the widespread use of the Mk 41 and ESSM-combination, which ensure the ability to quickly fill up stocks if the need arises (i.e. we can hopefully get more missiles from US or even Norwegian stocks if we get dragged into a war).

The choice of ESSM will also have indirect effects on the Army’s GBAD program for a medium-range SAM-system. The inability of MBDA to secure a naval CAMM-order from Finland will likely impact the chances for the same missile on land as well. The NASAMS-compatible AMRAAM-ER in turn got a further boost, as it share some parts commonality with the ESSM (the ESSM can also be fired from the NASAMS launcher, though it is dubious if the Army wants a passive seeker head). Overall, MBDA has had a surprisingly hard time in securing any kind of orders in Finland. Time will tell if HX changes this.

On a final note, it is nice to finally see the MoD and Navy fully switch to referring to the vessels as the Pohjanmaa-class. The name has been known for quite some time, and in building a connection between the general public and the project it certainly has a nicer ring to it than the formal Squadron 2020.

The Iskander Threat

Few modern weapon systems have the power to captivate popular imagination the way the Iskander does. Partly this stems from the lack of a clear specification, both for operational security reasons and because the system violates the (recently deceased) INF-treaty. Another reason for the allure is that the system represents a new capability, which so far has not been found in the Russian (nor in too many other countries’) arsenal, and lastly but not least the simple fact that it can carry nuclear warheads.

Iskander-M being launched. Source: Mil.ru via Wikimedia Commons

In addition, there is widespread confusion amongst non-defence geeks about how exactly the Iskander and other ballistic missiles differ from the more widespread cruise missiles, and how to defend against enemy Iskander-attacks. This blog will strive to sort out some of these misconceptions, and give a picture of how the Iskander threat should be evaluated.

The basic Iskander, Iskander-M, is a ballistic missile. For those into the details, the system’s official GRAU designation is 9K720 while the missile itself is designated 9M723. The word “ballistic” means that the missile roughly follows a ballistic trajectory, i.e. the path an object would take if you would throw it. A big rocket engine propels the Iskander up in the air, after which it will fall down onto the target. It isn’t a pure ballistic trajectory, the missile is guided and can make course changes, but it can’t e.g. regain height once it has started diving.

As said, the exact performance is shrouded in secrecy. The most often quoted figures is a range of 400-500 km, and a warhead of 700 kg. However, professor Stefan Forss already in 2012 noted that the official numbers doesn’t quite add up, and calculated a range of 500-750 km, while also noting that some Russian sources “could imply a heavy penetrating warhead weighing about 1,300 kg.” Note though that 700+ km ranges aren’t possible with such a heavy warhead in current configuration (the range calculations were made based on a 400 kg nuclear warhead). The missile likely has a CEP better than 10 meter under ideal circumstances, i.e. half of the missiles will fall within that distance of the target. A 700 kg warhead hitting within 10 meters, especially considering the kinetic energy of the approaching missile, does make the weapon viable to use against individual buildings with a conventional (i.e. non-nuclear) warhead, something which was not the case with Cold War missiles such as the SCUD or Tochka. However, like the earlier missiles, the Iskander is only capable of attacking fixed targets.

It is obvious that if you are supposed to reach a target hundreds of kilometers away with a ballistic trajectory you will need to go fast or high, preferably both. This is what makes shooting down ballistic missiles so hard. The Iskander missile dives towards the target at speeds of 2-3 kilometer per second. Trying to shoot down a maneuvering target falling towards the earth at eight times the speed of sound is extremely difficult, and require a very fast missile placed close to the target of the Iskander. The Patriot system does feature missiles capable of intercepting Iskanders (though their efficiency is questioned), and this is what the Swedish Army is in the process of acquiring. Needless to say, the capability doesn’t come cheap: the Swedish deal is valued at 2-3 billion Euros, which will give four batteries with anti-ballistic missile and anti-aircraft missiles.

However, the Iskander isn’t exactly cheap either. A missile brigade, there are ten to twelve in total in the Russian Armed Forces, feature twelve launchers meaning that the opening salvo of all Russian operational Iskanders would have a hard cap of 288 missiles. This would likely be lower as 100% availability is usually restricted to utopia and all brigades wouldn’t be directed against a single target anymore than all armoured brigades would.

Now, a hundred unstoppable conventional warheads raining down on Finland would cause issues. Targeting strategic sites such as bridges, headquarters, utilities such as power and water plants, would very quickly make things complicated. However, this is not in and by itself a war-winning weapon. Granted there could be a second wave, possibly even a third, but the supply of missiles aren’t endless. High-end weapons comes with a cost, even if you’re trading in rubles. In the end destruction caused by traditional air strikes coupled with cruise missiles will quickly become a bigger issue.

MiG-31 with Kinzhal air-launched ballistic missile at the Moscow Victory Day parade 2018. Source: Wikimedia Commons

A short note on the Kh-47M2 Kinzhal. This is a large missile carried by the MiG-31 heavy fighter. It is part of the family of recently unveiled Russian “super-weapons” aimed at ensuring a Russian nuclear deterrent in the face of developments when it comes to missile defences. The Kinzhal seems to be a modified version of the Iskander-M missile, which thanks to higher launch speed and height gives it a range of over 800 km (1,000 to 3,000 km is often quoted, but it seems that these numbers include the combat range of the aircraft). Kinzhal seems to be a more realistic option compared to several other of the unveiled systems, but exact specifications and whether Russia will field a conventionally armed version are still unclear.

Cruise Missiles

Cruise missiles are a completely different breed of beasts. They are in essence unmanned aircraft carrying a warhead to a target. The size, range, operating methods, launching platforms, and warhead types varies, but in essence they have an engine and wings to allow them to fly long distances, and then crash into whatever their target is. Often the cruise missiles fly towards their targets at very low altitude, using the terrain to mask their approach. The Finnish Air Force operate the AGM-158 JASSM cruise missile, while the Navy’s current and upcoming anti-ship missiles both exhibit similar traits (it is largely a question of nomenclature/taxonomy rather than any practical differences if anti-ship missiles should be counted amongst cruise missiles or as a detached family of their own).

The firing unit of the NASAMS, sporting six canister mounted AIM-120 AMRAAM missiles. Source: Maavoimat FB

Now, as the cruise missile flies like an aircraft towards its target it can also be shot down like one, using the regular means of fighters and ground based air defences. Cruise missiles can make tricky targets due to their low altitude, speed, and (in some cases) stealthiness, but a modern SAM-system such as the NASAMS of the Finnish Army should have no problem in bringing down one, provided it is located in the appropriate spot.

As opposed to ballistic missiles, cruise missiles have shown a nasty tendency to proliferate. In part this is due to the low(er) cost compared to modern ballistic missiles of the same class as the Iskander. The most famous example of a modern Russian cruise missile is the 3M14 Kalibr land-attack missile (think Tomahawk/TLAM), which sports a range of 2,000 km and comes in at a unit cost of 1.1 million Euro. The weapon is officially in use aboard a number of modern Russian warships (including submarines), and likely it is this very missile that is carried by the Iskander-K under the designation 9M729. Yes, confusingly enough there is both a ballistic missile-carrying version of the Iskander and a cruise missile-carrying version. Generally, if people refer to something simply as the “Iskander”, it is the ballistic missile-carrying Iskander-M they mean.

The 9M729 is also at the centre of the INF-controversy which led to the US declaring the treaty void (INF doesn’t cover sea-based missiles, but as soon as the Kalibr was brought ashore it became illegal under the INF-treaty).

An Iskander-K with one of it’s two cruise missile containers raised. Source: Vadim Grishankin via Wikimedia Commons

If it is the unstoppable nature of the ballistic missile that makes the Iskander-M a threat, it is the large number of missiles coupled with the vast range that makes the Kalibr/Iskander-K one. Finland is within range of the Kalibr of both the Baltic as well as the Northern Fleet, where the vessels of the Northern Fleet effectively are beyond the reach of the anti-ship weapons of the Finnish Defence Forces.

Conclusions

The Iskander-M is a threat. So is the Kalibr/Iskander-K and other cruise missiles. However, they have very little common with each other, besides the fact that they transport warheads into enemy territory (as does strike aircraft). Phrases such as “the ability to defend against Iskander and Kalibr-missiles” are sometimes thrown around as if they are referring to a single capability, when in fact they are vastly separate issues. We already have the capability to defend against cruise missiles in all three services, with weapons such as the NASAMS, Umkhonto, and the AIM-120 AMRAAM. Acquiring point-defence capabilities against the Iskander for four possible targets would be a project comparable in cost to two Squadron 2020-projects. Not vessels, but two complete projects of eight vessels in total. As such, it is hard to argue with the official Finnish position that we’ll simply have to disperse and be prepared to suffer a number of Iskander hits, while at the same time investing further in medium-range air defence capabilities to defend against cruise missiles and enemy aircraft. The combination of Squadron 2020, HX, and the Army’s new GBAD-program will make the skies over Finland much deadlier for an attacker in the upcoming decades. Just not for their ballistic missiles.

Guest Post: An Unreasonable Brigade Artillery

A few weeks ago a blog post discussing Swedish artillery at the brigade level caught my eye. As I noted last year,Finland is looking at the retirement of a significant portion of our brigade level assets in the near future, and which system should replace these is far from obvious. The post by Öhman was also of the kind of outside the box thinking I like to bring forward, so I contacted him and asked for permission to run an English translation. The translation is my own, and all faults when it comes to jargon are my own work as well.

The author Peter Öhman is a Swedish officer with a solid knowledge of anything armour or artillery who currently works at the Swedish Defence Material Administration. You will find him on Twitter and on his blog.

In a future growing Army there are many who feel that Haubits 08 ‘Archer’ would be optimally used as a divisional asset. It is a sensible idea which has been discussed in many places, but which won’t be developed further here.

With Haubits 08 as a divisional asset there would appear a void on the brigade level, as we don’t have any towed Haubits 77 mothballed. What should then be the remedy?

If one looks at the different requirements for a brigade-level artillery system they could look something like this:

  • Instantaneous firepower that allows a unit of size X to fire a fire mission in under 10 seconds,
  • Accuracy that allows the fire mission to hit the target location,
  • The ability to maintain sustained fire for X amount of time,
  • Protection which allows the artillery unit to operate together with the rest of the brigade,
  • Mobility which allows the artillery unit to move with the brigade’s battle,
  • High availability.

In practice this means that the artillery piece must have a certain rate of fire, especially initially. The ability to sustain fire over time is created by bringing lots of ammunition, having the ability to reload rapidly, having an efficient logistics chain, and sporting a high resistance to the barrel heating.

Protection means protection against shrapnel, but also signature reduction and the ability to rapidly move to a new position after firing. When discussing mobility it is easy to get dragged into a discussion about tracks or wheels, which is a balance between the ability to quickly transfer between battalions and cross-country mobility to reach suitable firing positions in the terrain. Very few today consider using towed pieces, due to the longer time to get them into position.

High availability may be technical reliability, but it may also be based on mobility, and perhaps most of all range.

As the requirements are broken down into details, sooner or later the question about what calibre should be used will become the topic of the day.

Of what calibre should a future system be?

155 mm is of course the NATO-standard and a calibre which has been working well since at least the Second World War. We can’t abandon a NATO-standard by ourselves, and we have old ammunition stocks which we need to be able to use. That’s how easy the analysis can be. Now is when I will be unreasonable and question this train of thought. Is 155 mm really an obvious choice for supporting the fighting formations of a brigade? The following text should be treated as something of a “military satire”.

If we look at the specifications for a number of common artillery systems in 152 and 155 mm we get the following table:

SystemWeight (t)Range (km)Am. carriedShots/minLengthCrew
2S194224.7506-8L/475
K-94730526-8L/525
M109A73524394L/394
PzH 200056306010L/525
Haub 0833.530218-9L/522-4

Ranges given are for standard rounds, i.e. not including base bleed or similar technologies.

When looking at even large calibers such as 203 mm the big benefit of 155 mm is that it is easier to handle both for humans and machines. A 155 mm shell weighs around 45 kg, compared to at least twice as much for a 203 mm one. The recoil forces are also about twice as big, leading to an unreasonably large gun. The range will also be short unless one want a barrel that is 2.5 m longer than the already long 155 mm L/52 barrels. Big and heavy ammunition also leads to a low rate of fire. The US M110 howitzer with an L/25 barrel has a range of 17 km with standard ammunition. Weighing 28 tons it only carry two rounds. This means a continuous supply of ammunition is required, and even in the best case scenario the rate of fire is around 1 shot/min.

Ukrainian 2S7 Pion in 2017. Source: Ukrainian MoD via Wikimedia Commons

The Russian 2S7 is bigger and weighs a staggering 46.5 ton, have a L/56.2 barrel which gives a V0 of 960 m/s and gives the 110 kg shell an impressive 37.5 km range. However, it only carries 8 rounds and can at best handle a rate of fire of 2.5 shots/min. 2S7 is 13 meters long and has a crew of seven.

These kinds of calibres are unreasonable for highly-mobile artillery that supports the combat units of a brigade, and are better suited to hammering fortifications.

A Finnish 2S1 Gvozdika / 122 PsH 74 during exercise Pohjoinen 18. Source: Maavoimat FB

Eastern countries also employ 122 mm. The most common vehicle is the 2S1 (122 PsH 74 in Finnish service) which fire a 21.7 kg shell out to 15.3 km from a L/36 barrel, it weighs 16 ton, has a crew of four, and carries 40 rounds.

2S34 Khosta on parade. Note the new weapon. Source: Vitaly Kuzmin via Wikimedia Commons

A modernised version of the 2S1 is known as the 2S34 Khosta which sports a 120 mm gun/mortar with a range of 14 km. The same gun is found in the 2S31 Vena which carries 70 rounds and weighs 19.5 tons.

Swedish 12/80 coastal artillery gun. Source: Marinmuseum via Wikimedia Commons

In Sweden we had the 12/80, a 120 mm version of Haubits 77. With a L/55 barrel it had the same range with load 2 that the L/38 Haubits 77 had as its maximum range.

Calibre 105 mm is something that usually has been found on the battalion level. An example of a modern system is Hawkeye which is based on the HMMWV. The weight is just 4.4 ton. With a L/27 barrel is has a range of 11.5 km with a 15 kg shell. According to one source 8 rounds are carried.

105/50 coastal defence gun of the Arholma Battery. Source: Patrik Nylin via Wikimedia Commons

There are also long-ranged 105 mm systems. The Swedish turreted automatic 105/50 with L/54 barrel had a range of 20 km. It is especially interesting that a number of other countries still cling to and develop 120 mm-class guns. I will therefore make a comparison between 120 and 155 mm weapons when it comes to a few specifications I regard as critical for brigade artillery.

Range, less is more!

Upon a quick comparison 155 mm seems to have the edge when it comes to range. 15.3 km from a L/36 barrel compared to 24 km from an L/39 when comparing 2S1 and M109. However, 2S1 uses a rather modest 3.8 kg powder charge to reach a V0 of 680 m/s and 15.3 km. At the other end of the spectrum, Swedish 120 mm Tornautomatpjäs 9101 (12/70) uses a L/62 barrel to reach 27 km with a V0 of 880 m/s. The earlier mentioned 120 mm 9501 (12/80 Karin) can reach 21.1 km with charge no 2 with a V0 of 800 m/s. 155 mm guns with a 800 m/s V0 can reach around 22 km, meaning that the difference is rather small. 120 mm as a calibre has good ballistic properties. With a barrel length of around L/50 a 120 mm gun will use 5-6 kg and a 155 mm one 12-15 kg of powder to reach a V0 of 800 m/s. A 120 mm L/62 is also 60 cm shorter than a 155 mm L/52. In other words a rather small potential edge in range for the 155 mm is balanced against having a long barrel that’s still easily handled for the 120 mm.

Another aspect of the range question plays a major role in the discussion, and this is where less is more. The fact is that when the range approaches or pushes beyond 20 km, the shells will follow a trajectory that is so high, and spend such a long time airborne that the weather makes accuracy unacceptably poor. The reason is partly because it becomes hard to reach the desired effect without ranging shots and/or the need for additional rounds in target, and partly because the increased dispersion increases the danger for the friendly units one tries to support. Base bleed and rocket assisted projectiles (RAP) which are used to increase the ranges also further diminish accuracy and increase cost. To counter this increase in dispersion once the range is edging towards 40 km technical aids such as precision-guided rounds and course correcting fuzes are used. These are very expensive, and ill-suited to the massed fires required to support ground combat. Firing at ranges between 30 and 40 km also has other consequences. At least double the gas pressure and V0 close to 1,000 m/s leads to increased strain on the equipment and faster wear. My opinion is that if the laws of physics makes it a bad, or at the very least an expensive, idea to use supporting fires at ranges above 20 km, then we shouldn’t invest too much money and effort into such a capability for systems acquired to support ground combat. To reach 20+ km 120 mm is plenty enough.

Effect

Presume a fire mission of 24 155 mm rounds would be replaced by a single round with the same weight of just over 1,000 kg in the middle of the target area. It is obvious that the effect would be poor in the majority of the target area and unnecessary good close to the giant round. Ordinarily one strives to spread the effect evenly over the whole target area. Case in point being the use of submunitions. Before the Convention on Cluster Munitions there was even a project on introducing 120 mm mortar rounds with submunitions, and in Russia who doesn’t give a damn about the ban on submunitions their use is increasing. Against fortified targets heavier rounds do however maintain the edge.

The 122 mm D-30 howitzer remains the mainstay of Finnish battalion indirect fire assets. Source: Maavoimat FB

In a comparison between a big bang and thousands of submunitions one can compare the weights of 24 rounds of 155 mm, 45 rounds of 120 mm, and 72 rounds of 105 mm. The superior effect would in this case come from 72 rounds of 105 mm. A good indication is that a Swedish fire mission of 24 120 mm mortar rounds is treated as the equal to 18 155 mm rounds. The weight of a mortar round is in fact more closely equal to that of a 105 mm howitzer round. The effect of a single 120 mm howitzer round matches very closely that of a 155 mm one. The issue is that one reaches further with a heavy round, but preferably would split it up in many smaller units when reaching the target area to get superior effect. As long as we uphold a ban on submunitions the importance of choosing a calibre that gives good effect in the target increases. Scientific advances also make it possible to fit a seeker in smaller rounds than before, though it would be difficult to get as good effect e.g. out of a 120 mm BONUS-round as out of a 155 mm one.

Logistics

To compare the logistics footprint I make the assumption that 24 155 mm rounds equals 30 120 mm rounds when it comes to effect. A complete 155 mm round has a weight of around 60 kg, made up of a 45 kg shell and a 15 kg charge. Similarly, a complete 120 mm round weighs around 32 kg, of which 25 kg is the shell and 7 kg the charge. The fire mission of the 120 mm gun would then come in at two-thirds the total weight of the 155 mm fire mission. If you include a casing to allow for the automatic handling of the ammunition a complete 120 mm round comes in at approximately 40 kg, meaning the fire mission is just 83% of the weight of the 155 mm one. However, fixed ammunition require more space, and the 120 mm fire mission with fixed ammunition will take up approximately 20% more space. However, comparing against fixed 155 mm ammunition the latter will weigh 70% more and take up 40% more space. The benefit of fixed ammunition is that in the same way as with Bkan and 120/80 it is possible to have a higher degree of automation when firing and handling the rounds. This in turn leads to a higher rate of fire and better effect in target. The conclusion is that with fixed 120 mm ammunition you get a similar logistic footprint, but with a round that is more easy to handle and you will be able to get off more rounds which will give as good or better effect in target compared to 155 mm. In real terms, a full charge 120 mm round with a fixed casing will weigh less than 40 kg, and can easily be carried from vehicle to vehicle by a single soldier. A 155 mm round with a fixed casing will come in at 85 kg and will need two persons to carry it, not the least due to the uneven weight distribution. If an autoloader could use the kind of combustible casings that tank rounds use, it should be possible to shave a few additional kilograms of the 120 mm round.

Bkan 1 with the original loader. Note the size of the 155 mm fixed ammunition in the loading frame.

Autoloading versus manual

To achieve good effect in target a high rate of fire is a good tool, and to reach a high rate of fire the ammunition and its handling plays a big role. 155 mm howitzers usually have a rate of fire that varies between 3 to 10 rounds per minute with separate loading ammunition. These are usually either completely manual or equipped with different kinds of automatic handling and loading aids. Some have the ability to fire off a few quick rounds, before settling in for a lower sustained rate of fire. E.g. Haubits 77A was able to fire three shots in less than ten seconds. This is possible as the charges are put in a casing, which allows for the use of a very quick vertically sliding breech block. The shell and the casing is then loaded with a hydraulic rammer. To fire really quickly fixed casings are needed. E.g. Bkan 1 has a technical rate of fire of 18 rounds/min. The 12/80 is another example albeit with 120 mm calibre. With an autoloader the 12/80 fires off 16 rounds/min. There are even faster Swedish guns. 120 mm anti-aircraft gun 4501 has a rate of fire of no less than 80 rounds/min. The 23 ton heavy gun carries 52 rounds.

12 cm Lvakan 4051

Another Swedish rapid-firing gun, although in 105 mm, is the Strv 103. As far as I remember, the technical rate of fire is 26-27 rounds/min and the tank carries 50 rounds. To note is that the sole 155 mm field artillery piece amongst these was the Bkan 1. The reason behind this is, amongst other things, that the mechanism becomes large and heavy. It is also unable to bring along more than 14 rounds. This is likely one of the reasons why modern 155 mm guns almost universally have separate loading munitions. The second, and perhaps even more important issue, is that one wants to be able to set the charge size for each round, and not be limited to a pre-set number of each charge that is set already when the ammunition is manufactured. In 120 mm it should however be possible to benefit from the carefree handling of fixed ammunition and bring more rounds, without the rounds becoming overly large.

Autoloaders is however not an end in itself, except when it comes to the firing. As mentioned earlier, 120 mm is considerably easier to move by hand. This includes fixed case 120 mm ammunition, which thanks to its below 40 kg weight can be moved in the same way ammunition was replenished in Strv 103.

Will there be something else than 155 mm if we buy a new system?

I have a hard time believing that, 155 mm is in all essence even more standard than 7.62 mm. That is why I describe this as an unreasonable brigade artillery. If one would start from a clean sheet, it is however entirely possible that with the technological advances of today the conclusion would be that another calibre would be better suited for supporting the brigades. Perhaps based on some of the reasoning found above.

But we just have to accept that we do not begin with a blank sheet, instead there are several limiting factors that affect the outcome. At the same time, evident truths need to be questioned every now and then. E.g. the miniaturisation of electronics allow for ever smaller rounds to become “smart”. If the reasoning behind 155 mm was the need for precision guided munitions the choice of calibre could be reevaluated now. However, over time factors such as standardisation have become important and will lead to the continued use of 155 mm.

Are we in the West looking for the right capabilities?

As a short sidetrack to the discussion on calibre choice I would like to touch upon two topics that I believe are receiving too much attention: the race for range and extreme precision.

With each new gun there are new solutions to push the range out even further, from L/39 barrels to L/52 as the new standard, and now barrels out to L/58 are discussed even for guns such as the M777.

M777A2 and M777ER with L/52 and L/58 barrels respectively. Source: US Army

Base bleed, RAP, and ramjet projectiles are other ways of reaching further. It is easy to see the benefit of reaching longer, and easy to quantify range as a requirement or selling point, which is why it is often in the spotlight. But range threatens to become the “24 cm higher cabin” of the artillery, an extreme cost driver. Longer range also places indirect requirements on extreme accuracy, no longer is just “rather accurate” good enough. The technology behind the increased accuracy is and will continue to be expensive. This means that the ammunition used to fire far away and with high accuracy becomes too expensive to use for massed fires. The most extreme example is the 155 mm guns of the Zumwalt-class which were supposed to receive rounds capable of reaching 153 km. The price tag became close to 1,000,000 USD/round as opposed to the planned 35,000 USD. The contract was revoked and the destroyers now lack a suitable round for their guns.

There need to be an analysis regarding the missions of individual systems. For a multitool, which is the role one can say that the Haubits 08 has been forced into, long range is a must. If it is a battalion-level asset, the conclusion might be that the 8 km range of a mortar is enough. If the mission is to support the fighting battalions of a brigade, the requirements need to be in sync with those demands, and not necessarily with those of the multitool. Was the reasoning behind the 150 km range of the Zumwalt’s 155 mm guns really correct? Should one have opted for another system if 150 km range was demanded?

The quest for accuracy partly comes from the increased range, but also from some kind of engineering bewitchment for perfection. Accuracy is very nice when the enemy headquarters is located or when the enemy has put their fighting positions close to a hospital. But at the end of the day, artillery is an area effect weapon, and to achieve effect it is enough to hit the target area instead of aiming for the bullseye with every round. I am worried that we in the West is forgetting this. I don’t know how many times I’ve heard “Isn’t it jolly good to have better accuracy, that we can get the same effect with fewer rounds.” I have tried to explain that it is enough to be in the right area and that it is more important to be able to fire large volumes in many places, which increases the odds that the enemy will be suppressed in many different spots. Often the fire mission is based on an estimate on the enemy and the terrain, and not on an observation. If one can see the enemy both we and the enemy can use direct fire, and it is the losses that causes which we wish to avoid. Why then aim for a few expensive bullseyes and completely overlook massed fires? Making this case is often like talking to the wall. I will however persist, gutta cavat lapidem.

Another Syrian Pantsir lost

Yesterday Sunday 20 January Israel again struck targets close to Damascus International Airport. Much is still unconfirmed about the raid, but it is clear that it included significant numbers of Syrian missiles fired in response, at least one of which led to two Iron Dome-missiles being fired from an Israeli battery close to Mt Hermon as it was on track to enter Israeli airspace (the missiles are usually fired in pairs to ensure intercept). It is not confirmed whether the missile was intercepted or not.


https://twitter.com/NTarnopolsky/status/1087082330047410176

A video has also surfaced of a single Buk being fired from a confirmed SAM-site close to the airport, but while the Russians and Syrians were their usual bombastic selves, ” strike on airport in Damascus caused no damage, seven missiles intercepted by Buk, Pantsir systems“, reality once again seems to be in poor agreement.


The Israeli Defense Forces has released a new video showing SAM-sites being targeted. The most interesting part of the clip shows a Pantsir-S1 (likely the S1E-version) being intercepted by what looks like a Delilah cruise missile.
Keen Syria-watchers will recognise  that this isn’t the first encounter between the Pantsir-S1 and the Delilah. For details how to recognise the Pantsir-S1 and Delilah footage, see the post from last time. While the Israeli modus operandi hasn’t seemingly changed, neither has the incompetence of the Syrian air defence crews. The radar is raised, but not rotating and pointing in the wrong direction, while the missiles are in the transport-position and not ready to be fired. Despite the vehicle being an obvious high-value target, it is left sitting out in the open with no attempt at camouflage or anyone trying to move it into cover.

Still showing the Buk shortly before it fires a single missile in a western direction.

The bottom line is that we still lack any proof of the Pantsir-S1 being of much use. It is possible that the missiles were used (successfully?) to intercept decoys launched before the strike itself, there are rumours of the Israelis using this tactic dating back to Operation Mole Cricket 19, though as with many aspects of these raids confirmed information is scarce.

Corporal Frisk – Half a decade on

19 January 2014 I officially launched my blog and associated Twitter-handle. The world was rather different back then, this being before both the Russian invasion of Crimea and the spectacular rise of ISIS. This was also before the official launch of both the HX and the Squadron 2020 program. Suffice to say, it’s been quite a journey so far!

Your’s truly on my first HX-themed trip, here in the cockpit of the JAS 39E Gripen in Linköping.

This is true in the literal sense of the word, as the blog has been the reason for my first ever visits to Estonia, Scotland, and, not to forget, Motala. But perhaps even more fascinating has been the people I have gotten to learn to know and the knowledge I have been fortunate enough to glean from them. I am a strong believer in the idea that to develop you need to surround yourself with people that are smarter than yourself, and I am happy to say that the blog has enabled me to do just that. This is true both for in-person meetings as well as on Twitter. The ability to ask questions directly to experts in varied fields is without doubt one of the strengths of Twitter as a medium, and I will gladly admit that many of my most successful posts would not have been possible without the feedback from a number of different people, including scholars, officers, and numerous other professionals and enthusiastic laymen. Many of you I am happy to count among my friends, regardless of whether we’ve ever met or not. A big thank you to all of you!

While my goal with the blog has always been to influence discussions on the topics I write about (and partly because I think it is fun to write down my musings!), what I have come to find out is that it has been a good influence on myself as well. Writing about topics I find interesting are a great way to force oneself to learn more and stay up to date. If you go back to my earlier posts you will see that there are topics I see differently today, and some where I have changed my mind completely (BMD capability for Squadron 2020 is one of those). Turns out few things are as efficient for learning as when you try to teach others.

Being based in Ostrobothnia means being far away from most of the national security and defence related action. However, once a year the Navy comes to visit. Source: Own picture

But writing has also been challenging at times. Dealing with topics of national security demand a careful balance between the need for operational security as well as openness and public discussion. This is something where I believe that it is impossible to have a template solution for all situations, and with posts such as the one on the Finnish wartime army order of battle I have spent quite some time thinking about how, if at all, to cover the topic. The feedback I have gotten over the years seems to confirm that I’ve struck a good balance.

A few notes on the blog this year and going forward.

The blog has grown year for year, and last year was no exception, with the number of views and visitors increasing 50% and 40% respectively compared to 2017. Last year’s most popular post was by far that regarding Airiston Helmi, which almost could compete with the evergreen Spitfire vs Bf 109. A surprise hit was the review of GMT Games’ Next War: Poland, which is an excellent board game. Go ahead and check it out if you haven’t already! As for where the traffic came from, social media and search engines reign supreme, but an interesting development is that Estonian Militaar.net now is the second largest forum when it comes to directing traffic to the blog, having passed Swedish SoldF.com.

Meeting Boeing Defence at Seinäjoki Air Show 2017 to hear about their offer for HX. Source: J. Häggblom

Keen readers might have noted that the advertisements are back. This is another decision I have been contemplating for quite a while, but in short while this in many ways still is a hobby of mine, I also strive to make sure that Corporal Frisk – Analysis and Consulting isn’t loss-making. The decision to monetize the blog is one additional step to ensure that this is the case.

As a final note, the blog roll is updated for the first time in 5 years! It now includes a couple of new-comers, including entries in Finnish, Swedish, German, and English, while some older ones have had to stand aside.

With the Swedish Navy towards the Future

“Be there early and stay”

That is what the Swedish Navy strives to do. With the Baltic Sea becoming busier and busier, maintaining situational awareness require not only information sharing with partners and a solid chain of land-based sensors, but also a presence out in the thick of it. And this is tied to the biggest challenge the force faces today – out of an estimated need of 24 vessels, the fleet currently consist of 7 units. And while stealth and the ability to choose when to be visible is a force multiplier, it can only improve the situation so much. As such, increasing the number of vessels is described as “vital”.

But this leads to the next round of issues – “personnel, personnel, personnel.” On the whole recruitment is going “rather well”, but there are some difficulties. Still, if the Navy is to grow, having fully trained crews for the high-end platforms such as corvettes and submarines will take time. For the time being, no conscripts serve aboard the vessels, though this might change if the Navy starts growing rapidly.

Leadship of one of the world’s most advanced corvette classes, HMS Visby, being escorted by a Finnish Jurmo-class landing craft during exercise Northern Coasts 2018. Source: Merivoimat FB.

But in the meantime cooperation with the Finnish Navy provide added capabilities. The point was raised that cooperation between the two navies are deeper compared to the Armies and the Air Forces. This stems from the fact that the first steps are relatively easy to take, as the ships can meet in the middle of the sea, avoiding high-profile invitations and vehicle convoys passing through the territory of the host nation. This in turn gave the two navies a head start, once the drive for deeper FISE-cooperation kicked off in earnest. In a region where incidents or mishaps could escalate and increase uncertainty, both navies view the FISE-cooperation as increasing stability and security in the region.

The introduction of new Russian vessels such as the Buyan-M and the Karakourt-class corvettes provide the Baltic Fleet with “quite good capabilities”, while at the same time the Russian exercises of 2018 have been held further out at sea and farther away from the Russian bases in Kaliningrad. This is something that the Swedish Navy keeps an eye on, to determine if this is the new normal or just an outlier. What is clear is that the famed Kaliningrad A2/AD-bubble will become “even more flexible” if it is sea-based compared to being restricted to Russian land territory. However, this brings us back to the original point: with the growing range of modern weapons, the demands placed on targeting data increases, which will require presence. But presence works both ways, and the Baltic Sea is a “good spot” for a maritime hybrid operation.

Will we know if it will be war before it start? I’m not so sure

So the Swedish Navy will have to grow, and the plan is clear: it will be an evolutionary growth. The best example of this method in practice is the currently ongoing MLU of the Gotland-class submarines, where sub-systems and lessons learned will be integrated into the upcoming A26-class. In the same way the Navy plans to use the MLU on the Visby-class of corvettes as a proof-of-concept for the projected Visby Gen 2.

Soldiers of the 205. Rifle company catching some rest while a CB 90 landing craft takes them to their next destination during exercise AURORA 17. Source: Mats Nyström/Försvarsmakten

Another hot topic is the creation of a second amphibious regiment, i.e. marines. While the current Amf 1 is something of a “and the kitchen sink” unit which include several support functions which belonged to earlier iterations of the Coastal Artillery/Amphibious Corps, the new unit will be a fighting unit, centered around marine infantry and aimed towards high-end combat. As such, it will also be smaller, numbering around 800 personnel compared to the 1,200 of Amf 1. This unit will be in place by 2025, and the Navy don’t expect any recruitment issues. “Marines are the easiest to recruit, any vacancies are filled within 72 hours.”

The post is based on a briefing held under Chatham House-rules at the Meripuolustuspäivä/Naval Defence Day in November 2018. General approval for the publishing of a post based on the briefing was received, but the final text has not been shown to anyone connected with the Swedish Navy (active or retired).