Eurofighter goes Electric

When a European country without a domestic candidate looks for a multirole fighter, I usually rank the chances of the Eurofighter somewhere between “low” and “abysmal”. It’s not that it’s a bad aircraft, but the decision by the partner nations to focus on air-to-air performance, and to first roll it out into service for the air-to-air role, has meant that the aircraft has been weighed somewhat differently than what your average F-16AM operator wishes for.

RS100755_DP112952-lpr
Often overlooked is the fact that BAE Systems is one of two companies whose fast jets currently are in service with the Finnish Air Force. The humble Hawk might be a far cry from the Typhoon, but it offers BAE Systems decades of experience of working with the Finnish Air Force. Picture courtesy of BAE Systems

However, not every country in Europe is a F-16 operator. Finland is a very happy F/A-18C Hornet operator, and looks at fighters in a somewhat different way from many otherwise comparable European air forces. Part of this is down to history, part of it is the lack of a military alliance, and eventually it all translates into doctrinal differences. The gist of the argument is that the air-to-air mission always comes first, and once that can be handled, the rest will take care of itself. Or as HX programme director col. Keränen puts it:

These scenarios [according to which HX contenders are evaluated] include counter air (air defence), counter land (air to ground), counter sea (air to sea), intelligence, surveillance and reconnaissance (ISR) and targeting, and long-range strike.

Out of these five scenarios, counter air is the most critical one and therefore takes precedence. Counter air is where a candidate’s capability to perform in combats both with fighters and ground based air defence is evaluated. This is a critical capability: the HX multirole fighter may get engaged in air combat or be attacked by ground based air defence in addition to other tasks.

The official translation of the Finnish text might not be the best, but you get the point.

For Finland, the Eurofighter actually does make sense in quite a few different ways. The focus on speed and semi-recessed missiles is just what’s needed for the air policing mission, which is the key operational mission of the Air Force in peacetime. Especially after Kuopio-Rissala became the most important base for the intercepts over the Gulf of Finland, cruise speed is of the essence. For the long-range strike role, even operating solely on internal fuel the Eurofighter/Storm Shadow-combination could easily replace the JASSM equipped Hornet. The Eurofighter also has a large number of operators, all with slightly different outlooks on how to meet the need of the modern battlefield, providing several development paths to choose from.

One of the more interesting changes to appear this autumn has been the renewed focus on electronic warfare in general and the SEAD/DEAD-mission set in particular. The Eurofighter feature the DASS (Defensive Aid Sub-System), but it has generally been regarded as inferior to the SPECTRA of the Rafale or to the upcoming Arexis of Gripen E. Whether this is a correct judgement or simply an effect of the focus placed on the EW-part of their aircraft in the marketing by Dassault and Saab is impossible to judge conclusively based on open sources, but it is now clear that the Eurofighter consortium has decided to step up their game in this area.

Eurofighter Typhoon
Nothing quite says ‘electronic warfare’ as having the shape of the aircraft outlined in turquoise mesh. Image courtesy of BAE System, created by images.art.design. Werbeagentur

A key item here was the announcement of the Praetorian Evolution concept for a thorough upgrade of the DASS. Part of the larger Typhoon Long Term Evolution activity, in the words of a BAE Systems representative the “Praetorian Evolution is a conceptual roadmap that presents a number of options for a future DASS architecture”. As such, it isn’t a set package, but an assortment of options that can be picked by the operating countries to move forward with. A key part enabling this is the the ‘all digital architecture’ of the updated DASS. Elements of this already exist within the current DASS, but Praetorian Evolution would see the digital coverage increased within the system to take advantage of recent advances in the field. The idea is to turn the cranks to eleven, creating what Eurofighter has dubbed “digital stealth”.

Yes, it’s a marketing term. But as Eurofighter has decided to use the moniker for it’s EW-concept, it’s worth looking into what they mean with it to understand how they envision the Eurofighter will operate to stay survivable and lethal on the future battlefield.

The approach is two-pronged:

First, the situational awareness has to be good enough to supply the pilot with an accurate picture of the threat environment to highlight which emitters are where, allowing the pilot to make informed decisions to keep the aircraft out of range from SAMs and enemy fighters. A key part here is the mission data set (including the database allowing the correct identification of emitters), which can be updated within ‘hours’ to ensure that the aircraft understands what the sensors see. On a slightly longer scale, the software behind key subsystems such as the radars will be updated every few months. This is also a feature of the Eurofighter’s lack of locked black boxes and unforgiving IP’s that is a strong selling point compared to the transatlantic competition.

However, it isn’t always possible to simply hide and stay out of harms way. In those situations, the EW suite will do its best to either hide the signature of the aircraft, or create enough noise to make the picture confusing as to deny the enemy a targeting opportunity. For this part, the aircraft not only employ onboard, towed, and podded sensors, but will also feature the upcoming SPEAR EW. This is a stand-in jammer based on the same hardware as found in the BriteCloud expendable active decoy (also integrated on the Eurofighter), but mounted in place of the warhead on a SPEAR missile. This lighter and smaller load compared to the warhead allows for up to three times the range of the normal SPEAR, and ones fired the missile can fly towards the enemy and either simply blind the enemy radars, or spoof them by creating one or several (50 being mentioned) false targets. The triple-carriage of the baseline SPEAR is also available for the EW-variant, and allows the operators to mix and match however they want (a total of twelve can be carried on four hardpoints while still leaving the two ‘wet’ wing stations free for drop tanks). As the SPEAR is the RAF’s SEAD-weapon of choice, this allows for interesting combinations, where a pair of Typhoons can release a SPEAR EW acting as a false target to bait the enemy air defences into action, allowing the fighters to map the current positions of the enemy radars. These are then jammed by a salvo of a few more SPEAR EWs, while at the same time a dozen (or more) standard SPEAR missiles target the radars in saturation attacks. However, the SPEAR EW isn’t just a SEAD/DEAD weapon, but also plays an interesting role in air-to-air scenarios, where the ability to spoof enemy fighters create interesting tactical opportunities. While the SPEAR EW was officially unveiled only this autumn, it is part of the Eurofighter-package for HX.

Electronic combat capability is offered to Finland in our proposal in a different way [compared to the ECR] through developments in electronically-scanning radar technology and the integration of electronic warfare weapons such as SPEAR EW, which is being developed through a UK-funded programme.

Which brings us to another recently unveiled project that caused quite a stir, the Eurofighter ECR concept offered to the German Air Force.

The German Air Force is one of three NATO air forces to operate a dedicated SEAD/DEAD platform, in the form of the Tornado ECR operated by the TaktLwG 51 “Immelmann”. These will bow out together with the rest of the German Tornado-fleet during the next decade, and a replacement for the Tornado IDS and ECR fleet is sought either in the form of more Eurofighters or F/A-18E/F Super Hornets, with EA-18G Growlers providing the Tornado ECR-replacement. The Eurofighter ECR concept is tailored to meet the German requirements, and include signal-homing missiles in the form of the AGM-88E AARGM, new large podded jammers, two more ‘wet’ stations to allow the drop tanks to move out of the way for said jammers, and a new decoupled rear cockpit for the WSO. The ECR as such is not part of the offer to Finland, but “as with any technology developed by the Eurofighter consortium, the option of an ECR will be available to Finland as a future growth option.” The options also include picking just the parts of the concept deemed suitable for Finnish needs. This could e.g. translate into acquiring just the jammers without the new ‘wet’ stations and accepting the range and endurance limitations it causes.

The Eurofighter consortium’s claim is that “digital stealth” is more flexible and adaptable than traditional low-observable technologies which are built into the aircraft itself, and can more easily be adapted to face new threats. This largely follows the same line of reasoning presented by Boeing, Dassault, and Saab, and on paper hold serious merit. If there is a breakthrough in some “anti-stealth” technology, the F-35 might lose it’s most important unique selling point. However, for the foreseeable future the X-band radars will continue to play an important role in most engagements, especially for the crucial step of producing an accurate enough fix on the target’s location that it can be shot down, and here a smaller radar cross section is always smaller than a larger radar cross section. The question is how big a difference that makes compared to other features? Currently the answer is “quite a lot”, but will the same answer hold true in 2035?

Spanish Tiffie
The large number of users is perhaps the best argument for the Eurofighter continuing to be updated into the late 2050’s. Here a Spanish aircraft touches down on Finnish ground. Source: Own picture

The Eurofighter is still an underdog in the HX programme. The largest question continues to be if, and in that case how, BAE Systems can guarantee that Finland won’t be left as the sole operator trying to keep the aircraft at the cutting edge past 2050. The aircraft itself likely isn’t the issue, the space and raw power certainly is there, but the question is if the other operators will be interested in spending money on it after the FCAS and Tempest programs sees new aircraft entering service sometime after 2040. Still, it wouldn’t be the first time an underdog scores big in a Finnish defence programme, and the Eurofighter does have a few really strong cards on hand. Played right, and the competition just might turn out to the benefit of the large eurocanard.

The European Fighter, Pt. 2

25 years ago Finland was looking for an air superiority fighter to replace the ageing J 35 Draken and MiG-21Bis which dominated the ranks of the air force. As is well known, the choice fell on the F/A-18C Hornet, which for the first two decades served solely in the air-to-air role (officially designated F-18C by the Finnish Air Force). But the times they are a-changin’, and with MLU2 the multirole potential was finally brought into play in the Finnish Air Force as well. This also means that for HX to meet the matching set of capabilities, it must be able to fulfill different roles, including air-to-air, air-to-ground, ISR, maritime strike, and stand-off precision strike. The last is treated as a unique requirement by the Finnish Defence Forces, as it requires a completely different setup compared to ‘ordinary’ air-to-ground missions.

F-2000
A crew chief from the Finnish Border Guard’s AW119 Koala watches as an Italian F-2000 Eurofighter touches down in Finland for the first time ever. Source: Own picture

However, while the aircraft will certainly occupy a host of roles, there’s little question that air defence still is and will remain the core mission of the Finnish Air Force. The ample availability of indirect fire, coupled with the planned acquisition of more accurate and longer-ranged munitions for both barrel and rocket artillery, means that there are several ways to kill anything moving on the ground. But even with the upcoming GBAD program, getting proper air defence coverage at medium and high altitudes is another issue. Here the teamwork between air and ground-based systems is a must, and HX will be the air component at least past 2050.

This suits the Eurofighter consortium just fine. While the marketing slogan might be that it is “a platform for any weapon, any mission”, it is clear that the concept owes much to the requirement of an air defence fighter that emerged a number of decades ago. This is most visible in the thrust-to-weight ratio of 1.15, well above both the F-15 and the F-16, which together with the aerodynamically rather clean design gives the aircraft an edge over the competition when it comes to raw speed and altitude performance. Over Syria and Iraq, Typhoon packages handle deconfliction of the air space by simply transiting above the rest of the aircrafts operating in the area, using their speed and endurance to quickly transit between holding areas and targets.

The speed is and obvious benefit in the QRA role as well, a key part in the life of both the Finnish as well as for the partner nations. This is where the Typhoon really shines. Being airborne in just over 1,000 feet (305 meters), the fighter is supersonic within two minutes from scramble. Importantly, even a light air-to-air load includes four semi-recessed Meteor and two ASRAAM or Iris-T, with the full load of six Meteors and two short-range missiles (or four plus four) already starting to put hurt into the arms budget of most air forces if more than a handful of fighters are to be launched. Compared to the current full F-35 load (including external stores) of four shorter-ranged AIM-120C AMRAAM and two AIM-9X, that is a significant difference both in quantity and quality (the F-35 is slated to receive upgrades to the capacity at some point in the future).

HN och EF
Part of the German delegation watches as the Finnish F/A-18C Hornet solo display passes above. Source: Own picture

Meanwhile, the Typhoon is proving to be no hangar queen (Germany being the exception, but that is a reflection of the readiness of the German Defence Forces as a whole). The preceding Italian Typhoon rotation to BAP which took place in 2015 sported a 99,4% availability rate, and during the recent NATO Tiger Meet the Eurofighter had the best mission availability rate of all involved fighters. As test pilot Paul Smith puts it:

If you put fuel and weapons on it, it just keeps flying.

The combination of large amounts of advanced weapons carried, long-ranged sensors, and a significant endurance (further improved by the large drop tanks routinely carried on stations 3 and 11) means that the aircraft in high-end exercises often is the first aircraft in and the last aircraft out. The semi-recessed Meteors and light outer stations (no. 1 and 13) also mean that even in a heavy air-to-ground load, the aircraft has four long-range and two short-range air-to-air missiles to defend itself or other parts of the airspace.

But while the fighter has a clear air-to-air pedigree, recent upgrades has made it a true multirole platform. The British Typhoons have currently been hard at work employing the light Brimstone anti-vehicle/low-collateral damage missile and the Paveway IV laser/GPS/INS-guided 500 lbs (230 kg) bomb over Iraq and Syria. The Brimstone is carried on triple launchers, while the Paveway IV can be carried on single- or twin-launchers, leading to an impressive amount of weapons a single aircraft can bring to the battlefield. Instead of the Paveway IV, the German Air Force carry the corresponding GBU-48 Enhanced Paveway II.

However, Finland has never seen the prime role of the Air Force as being that of quashing large amounts of enemy armour, so the Brimstone might not be high on the wishlist. More interesting are the cruise missiles of the aircraft, with BAE Systems marketing both the Storm Shadow (used by RAF in the recent Syrian strikes) and the Taurus KEPD 350 (integrated onto the German Typhoons). Both are very much the kind of weapon that will be acquired to fill the void left by the AGM-158 JASSM. The really interesting weapon is however the SPEAR 3, which is currently in flight testing on the Typhoon.

Outwardly, the SPEAR looks rather like the Brimstone, but while the Brimstone has a rocket engine to boost it up to speed after which it coasts along until hitting something, the SPEAR is a cruise missile with pop-out wings and a small turbojet. This gives it significantly more range and the ability to fly at low altitudes, and while the Brimstone is a AGM-65 Maverick replacement and Storm Shadow is a JASSM replacement, the SPEAR is something completely new. The low weight (100 kg) and triple racks means that they can be used in larger numbers compared to the ‘silver bullet’-role that traditional cruise missiles occupy. At the same time, their stand-off range and smart attack modes (such as synchronised attacks from multiple directions) means that they can reach targets which earlier would have been considered too far away or too well defended. The warhead might be too small for hardened buildings, but will nicely take out vehicles, light buildings, and small vessel (or disable elements of capital ships).

Good examples of these kinds of sub-strategic targets are command posts, air defence radars, and high-value vehicles (armoured or soft-skinned). To further highlight the interest from the Finnish Defence Forces for this kind of ability to “shape the battlefield”, as the BAE Systems marketing line goes, it is notable that the targets for the Finnish JASSM living firings earlier this year were shaped suspiciously like Russian Iskander ballistic missile launchers or long-ranged SAM-launchers. While the cost of JASSM likely make it prohibitively expensive in a SAM-busting role, the SPEAR would be highly efficient. RAF is already planning on taking up the SEAD/DEAD role with the Typhoon/SPEAR-combination. The flexibility of the weapon would mean that the SPEAR would provide the Finnish Defence Forces with a SEAD, anti-armour, and anti-ship capability in a single stroke. All of these are mentioned as capabilities which the Finnish Air Force is looking at for HX, but which might prove too niche for dedicated single-role weapons.

Typhoon scale model.JPG
The dream – at least for BAE Systems and their partners. Source: Own picture

But from where does a small country such as Finland get adequate targeting data for long-range cruise missile strikes? Here the Eurofighter consortium plays one of their unique selling points, in that the varied partner companies sport a large number of different capabilities, one of which is the Airbus Intelligence Defense and Space-division. This is one of the prime suppliers of satellite imagery, including synthetic-aperture radar ones. BAE Systems notes that a Finnish Typhoon-buy could include an unspecified satellite intelligence package. This shines an interesting light on one of the more curious air show-tweets made by any of the HX-contenders.