Wargames

A recent discussion on Twitter caught my eye. In short, fellow blogger ‘IsoT’ had made a scenario in Command: Modern Operations where he ran HX-contenders in strike missions against Russian targets. What raised eyebrows was that a combined Super Hornet/Growler-force had little issues with cleaning out enemy aircraft, they struggled in the face of the Russian IADS. Perhaps most surprisingly, the suppression reportedly worked rather well, but few kills against enemy radars/other GBAD-systems were scored. This peeked my interest, and I got intrigued enough to start doing my own wargaming. But let’s start from the beginning.

What is Command: Modern Operations?

Command: Modern Operations (CMO) is the follow-on to the older Command: Modern Air/Naval Operations (COMANO), itself the spiritual successor to the old Harpoon-series. The basic version is based on open sources and meant largely for entertainment purposes (though granted you need a bit of an unconventional definition of “entertainment” to enjoy it, but I figure most of my readers will fit that description). There is also a professional edition, which sport an impressive list of references (including, ironically enough, both Boeing and Lockheed Martin, as well as a number of services). CMO is widely billed as the best simulator available to the general public for this kind of scenarios, though obviously it being based on open information will lead to a certain amount of guesswork when it comes to the most classified capabilities (such as stealth and EW). As such, while you shouldn’t treat the results as gospel, it does provide some interesting pointers.

Note that there for all aircraft are some omissions/less than ideal loadouts in the database for the rather particular Finnish case. These will have an effect on the outcome. I also generally prefer to create the missions and then let the AI play them out instead of directing individual aircraft and shots. With that said, I have not played the scenarios completely hands-off, but have intervened a few times when e.g. the automated waypoints are placed straight on top of known enemy air defence sites.

So what’s the situation?

For my scenario I imagine us being a bit into a conflict taking place roughly in 2031, with Russian forces advancing on the Vyborg-Hamina and Vyborg-Lappeenranta routes, as well as holding force being located in Niirala/Värtsilä. At this stage the Finnish Air Force decides that cutting a bunch of bridges in the enemy’s rear will slow things down for the aggressor, and as such a coordinated strike is mounted.

The Russian forces are made up of fighters, IADS, Army air defence units, as well as small surface action group operating between Gogland and St Petersburg. In the interest of keeping things manageable and staying with the large coordinated strike-theme I decided to not model enemy air strikes which could be presumed to take place at the same time. As such, no Russian air-to-ground aircraft or helicopters are included in the scenario, and a number of Finnish fighters are deducted to represent fighters on stand-by for other missions (such as defensive counter air).

So how many fighters do Finland have free for this mission? A very rough calculation starts with 64 HX fighters, of which say 12 are unavailable due to maintenance, another 12 shot-down, destroyed, or damaged so that they are unavailable, and 12 being used for other missions. That leaves 28 available for what would be the main offensive air operation, which does sound like a number that is in the right neighbourhood. You can argue it up or down, but in the end that is largely a question of details. As this is the Finnish Air Force we’re talking about, the fighters are dispersed over a number of bases, with the most obviously being found on the main air force bases (Tampere-Pirkkala, Jyväskylä-Tikkakoski, and Kuopio-Rissala in this case, as Rovaniemi is too far north to be of much importance for this operation). The Finnish forces also has their trusty C-295 Dragon Shield SIGINT platform airborne, and there are a number of Finnish GBAD and air surveillance systems spread out (NASAMS-ER isn’t found in the database, so we presume CAMM has won the ITSUKO award).

Sweden and other countries are friendly but not involved in the fighting. That means that BAP (made up of four Italian Eurofighters, of which three are serviceable) and Sweden (operating a GlobalEye and escorting JAS 39E Gripens out of F 16 Uppsala) share their situational picture with Finland. You may argue this is unrealistic, but it felt like a suitable middle ground between modelling a full-scale Baltic Sea-wide conflict on one side and a completely isolated Finland on the other.

The Russians

Perhaps the biggest question for the scenario is the Russian order of battle. I have made a number of assumptions based on the current Russian OOB, in essence assuming upgrades are taking place, a number of units are pulled from other districts to support the conflict, and that modern weaponry (R-77 being key here) are available in numbers (this last point has proved a surprisingly big hurdle when it comes to modernising Russian air power, but in another ten years I am going to give them the assumption of finally having a modern active MRAAM).

The basic view at the start of the scenario on the Russian side. Note the civilian bogey in the north-east, one of a handful of civilian aircraft flying around.

With regards to the units, the following will be doing the fighting and the changes I’ve made:

  • 159 IAP in Besovets (Petrozavodsk) will have received another Su-35S squadron to replace it’s current Su-27SM one, bringing their total strength up to three squadrons of Su-35S,
  • 790 IAP at Kohtilovo replaces their last Su-27SM with Su-35S, bringing their total strength up to two squadrons of MiG-31BM and one of Su-35S. The Su-35S squadron is forward-deployed to Pushkin (St Petersburg), while the two MiG-31BM squadrons provide escort to the AEW&C aircrafts and fly CAP with a prosecution area over St Petersburg while patrolling a bit further back,
  • The naval air arm will have converted both squadrons to MiG-29K (with a small number of MiG-29KUBR), and both 279 KIAP and 100 KIAP are forward-deployed to Gromovo, which have been used by the units earlier,
  • AEW&C is provided by the 610 TsBP out of Ivanovo Severnyi with a small number of A-100 (the unit currently operating variants of the A-50),
  • Current plans call for three squadrons of Su-57 to have been delivered by then. I have based two of these at Pushkin and Besovets respectively, being designated 31 IAP and 14 IAP respectively. The designations are more and indication that these are reinforcements deployed north for this particular conflict rather than me betting that A) these will be among the first three units two set up squadrons of Su-57, and B) that these two wings would provide the squadrons used to reinforce a Finnish conflict.

Again, there are lots of arguments to be made with regards to which particular units would come to support, whether there would be more or less or units, and how many would be available to meet a Finnish air strike and how many would be tied up with other tasks (such as escort missions) in the same way a number of Finnish aircraft are (again, we are only looking at the Finnish strike and the Russian response, which is an oversimplification, but one that hopefully strikes a balance between engagements too small to provide useful data and those too large to be able to run properly).

The Russian Air Force (and Naval Aviation) will fly three main CAP-boxes in addition to the air defence missions the MiG-31s are tasked with. One box roughly cover the Karelian Ishmuts and inner parts of the Gulf of Finland. This is covered by the Pushkin-based units, and at T=0 there are one flight of Su-35S and two of Su-57 taking off (each flight consisting of two fighters), with a third Su-57 flight and two Su-35S flights being ready at T+60 and another 10+10 aircraft in reserve.

The central CAP-box cover the Karelian Isthmus and Lake Ladoga as well as the immediate shoreline of it to the north and north-east. This is the responsibility of the naval fighters, launching three flights of MiG-29K at T=0, followed by another two flights at T+60, and 15 MiG-29K plus 4 MiG-29KUB in reserve.

The Northern CAP-box stretches roughly from the centreline of Lake Ladoga and up to the centreline of Onega. This is the responsibility of the Besovets-based fighters, which launches one flight of Su-57 and two flights of Su-35S at T=0, with a second Su-57 flight at T+30 and two Su-35S flights at T+60, with another 5+18 aircraft in reserve.

The Navy would likely mainly operate out of Baltiysk, but I included a small surface action group made up of one Project 2235 Admiral Gorshkov-class frigate and two Project 22800 Karakurt-class corvettes.

The integrated air defences consist of a number of units, spread out over both regions:

  • Four battalions of S-400 providing general air defence coverage,
  • Six 9K330Tor-M2KM platoons, defending installations such as radars, bridges, and airfields,
  • Seven 9K37M1-2 Buk-M1-2 platoons, defending different areas and key targets,
  • Four Pantsir-SM platoons,
  • Five 1L257 Krasuha-4 and three 1L267 Moskva-1 jammers/ELINT-platforms,
  • One 55Zh6M Nebo-M (Tall Rack) VHF-band radar at Valamo in Lake Ladoga,
  • One 36D6 (Tin Shield B) air surveillance radar on Gogland.

In all cases I’ve strived to place the units at local high spots to provide ample coverage.

In addition, the army units are obviously supported by their own air defence units:

  • Two S-300V4 Antey battalions supporting the main thrust, being placed close to the bridges over the Bay of Vyborg,
  • Five 9K22M1 Tunguska-M1 platoons,
  • Eleven ZSU-23-4 Shilka platoons.

In a real-world scenario there obviously would be a ground-war going on, hiding the GBAD-platforms among a number of other radar blips. To provide for something to that effect without having the processor try to smoke itself, I’ve inserted a total of 30 generic T-72BM platoons (four MBTs in each). In this scenario, their only mission is to mask the important units.

Again, it is entirely possible to argue for any number of changes to the setup presented above, but at the end of the day I believe there should be enough fireworks to separate the wheat from the chaff.*

F-35A – Don’t fire until you see the whites of their eyes

IsoT reportedly flew with bombs. My spontaneous reaction was that that felt like literally begging for flak, but I was certainly not going to skip over testing that. Especially as Lockheed Martin has argued for the F-35 having an edge over the competition in being able to use cost-effective weapons (i.e. bombs) when others will have to use longer-ranged (i.e. more expensive) munitions. So to begin with, let’s see if the F-35A can bring down a bunch of highly defended bridges with GBU-31!

The F-35A strikes kicking off. Note how the detailed sensor modelling means that one of the vessels in the SAG shows up on both the radar and the AN/ASQ-239 Barracuda of ‘Villisika One’, providing a good fix on the position, while the slightly greater bearing angle to the other vessel means that the radar can’t see it, making the distance to the target more uncertain.

The idea is simple. Four F-35A north and six F-35A south of Lake Ladoga will clean up the ground-based air defence in their respective areas with GBU-53/B SDB II, while the strikes will take place with eight F-35As towards Olonets (plus two escorting) and four F-35As towards the Vyborg-bridges (plus four escorting). All aircraft carries only internal loadouts.

The escorting fighters on the Vyborg strike have no issue cleaning up the enemy fighters with their AIM-120D (AIM-120C-8 wasn’t available in the loadout options), but the ships have noticed them.

This isn’t working out too well. The F-35s dive towards the deck, but both get bagged by the ship-launched SAMs (9M96D, fired from the naval version of the S-350 found aboard Admiral Gorshkov).

The lead is going down in flames, soon to be followed by the wingman. ‘F-22’ in the background refer to ‘Freighter 22’, a Boeing 777 slowly cruising over Pskov, and not a USAF stealth fighter

The northern battle is rather tense, with the enemy fighters making more of a showing.

A number of fighters and missiles from both sides flying around over the border north of Lake Ladoga.

An interesting detail is that the air battle to the north pull away most fighters from the Karelian Isthmus, leaving the door open for the incoming strike aircraft (well, with the exception of the ground-based systems…). It can be mentioned that at this stage the two F-35As have been joined by no less than 13 enemy fighters in the ‘Lost’-column (5 MiG-29K, 4 Su-35S, 4 Su-57). Also worth mentioning that the Finnish fighters have already fired no more than 35 AIM-120D AMRAAMs (against 23 R-77 and eight 9M96D for the Russians), showing the value of large weapon stocks.

However, things take a turn for the worse, and there’s only so many active radarseekers one can outrun. Both the fighters and the Admiral Gorshkov start to take their toll. At the same time the SEAD-efforts and strikes are starting to create some havoc.

The end-result are somewhat surprising. Pushing in to use JDAMs prove though, with 13 out of 28 F-35As not coming home. On the enemy side, more or less the whole first wave of fighters is brought down, with 18 downed aircraft shared equally between MiG-29K, Su-35S, and Su-57. The SEAD-mission is something of a failure, with a large number of the 59 GBU-53/Bs being dropped in-flight by enemy fire. In the end, two Buk TELARs and one Buk LLV as well as a handfull of Shilkas are wiped out. Five bridges are brought down, including one of the heavily defended ones next to Vyborg. Most surprising was the relatively low number of kills for the GBADs, with a Buk and a S-300V4 scoring a single kill each with the fighters and in particular the Admiral Gorshkov proving highly effective. Of course, the large number of missiles in the air that force the F-35s to bleed energy means that the larger systems might have played a more important role in ensuring the kills than the statistics seem to indicate, but considering the large number of missiles fired (10 9M338K from the Tor, 24 9M317 from the Buk, 19 9M311-M1 from the Tungushka, 33 40N6 from the S-400, 48 9M83M from the S-300V4, and 32 9M96D from the Gorshkov), the probability of a kill isn’t overly impressive for the ground-based systems. In part, the F-35s operating at altitude and the flanking position of the Gorshkov probably explain its success compared to the other systems.

Two reruns – including one where I try to actively target the Gorshkov in the first wave of strikes – gives roughly the same result. Yes, you can achieve the target, but there will be significant blood. It feels like it should be doable, but somehow there’s always too much stuff flying around in the air for the aircraft to make it out. The issues with internal loads, especially for the strike- and SEAD-aircraft, is also evident in that two AMRAAMs simply isn’t enough for a serious fight, and if they get cut off from their escorts (who still only sling six AMRAAMs a piece) they will quickly run out off options that aren’t spelled RTB.

But there’s a reason Finland wants JASSMs.

This time with less Finns in the skies of Russia.

The JASSM-strike looks impressive, but the results are surprisingly mixed. The strike aircraft can launch from the safety of staying right above their airfield, but the missiles are vulnerable and need escorting. In the north, the horde of enemy fighters jump on the missiles and the CAP escorts get overwhelmed and shot down trying to protect the missiles. Ironically, this opens up the south, and the lack of fighter cover there means that more or less all weapons get through, reducing four out of five of the key bridges to rubble. But the losses among the CAP and SEAD aircraft that got a bit too close actually means that the Russians achieve a 2:1 kill ratio when eight F-35As are brought down from a combination of fighters and SAMs (including the Gorshkov, which I am really starting to worry about). Still, this was for sure the most effective way of killing bridges, and a one-two-punch of first dragging the fighters north with a four-ship taking off and pretending to pick a fight before turning and running for Rovaniemi while in the south the bridges of Vyborg are bombarded, followed by a second wave after the enemy fighters have returned to their main CAP-boxes might be the holy grail of bridge-hunting.

A quick re-run seems to indicate this is indeed the way forward. The four-ship flying bait does suffer losses (three aircraft shot down, of which one pilot got out), but the enemy losses are serious: nine bridges, 6 MiG-29K, 6 Su-35S, and 4 Su-57. Even despite this not being the out-and-out success I should be possible by making the turn north timed better, this is still a kill:loss ratio in excess of 5:1, and bringing down nine bridges with a combined firing of 24 JASSM isn’t bad. The one thing that was more interesting was the relative lack of success for the SEAD-birds, with both GBU-53s and AGM-88E AARGM-ER (the latter which notably hasn’t been mentioned in Finnish F-35 discussion) being swatted out of the air at comfortable distance by the enemy air defences (again, Gorshkov played a major role).

Typhoon – High and fast

The Eurofighter would in Finnish service align with the UK model, and as such we sprinkle 28 Typhoons with CAPTOR-E radars on the Finnish airfields. Again, let’s first see if we can go out with bombs.

The first step is to launch a four-ship loaded with Meteors from a westerly base to try and sweep away fighters by being able to come in with speed and altitude. The large amount of Meteors pay dividends, as the four Typhoons manage to fight of a number of Su-57 and Su-35S and score five for the loss of a single aircraft.

The Typhoons continue to do well in the air-to-air arena, dodging streams of enemy missiles (including the feared S-300V4) while keeping dropping enemy aircraft. A first wave of SEAD-aircraft causes chaos as enemy fighters and air defences keep hunting swarms of Spear-EW jammers, but the destruction of air defences fail as the strike pair equipped with Spear-missiles fail to properly identify their targets. Still, with a kill:loss ratio at 8:1 things are looking rather promising. Now about those bridges…

The bombers are unable to close on their targets as streams of SAMs force them to keep dodging in the skies above Utti. The combination of DASS and aerodynamics is impressive, and it feels like the aircraft are in fact better able to dodge missile fire than the F-35 was. One possible explanation is that the missiles are fired at longer ranges, allowing for more time to react.

The huge number of Spear EW released by any single Typhoon is a very nice feature. Unfortunately the database doesn’t allow for mixed loadouts, as in reality a SEAD-bird would likely carry a mix of kinetic and EW SPEARs

The whole thing is a bit of a mixed bag. As said, the enemy missiles are largely punching air, but that also means that there’s preciously little in the way of moving forward in the face of combined Buk and S-300V4 fires. Eventually I take manual control and try to push the bombers into firing range of the Vyborg bridges, leading to all four being shot down. The Spears are however a really nice capability, as with the short-ranged loads allowing for four hardpoints dedicated to three each, a pair of Typhoons can bring 24 missiles to the fight. In a fight where volume is crucial, having four aircraft launch 24 jammers/false targets followed by 24 missiles actually allows for some kills, including the Nebo-radar, a 9A83M TELAR and a 9A84 LLV from the S-300V4 batteries, a single Shilka, and five T-72BM as collateral damage during the SEAD-strikes. The Meteors also by far outshine the R-77s, and despite me pushing the bombers too far (leaving 12 Typhoons as craters in the ground) the exchange ratio is somewhat positive with 10 MiG-29K, 10 Su-35S, 4 Su-57, and a single MiG-31BM joining them in the lawn dart-club, netting the Finnish Air Force just over 2:1 in kills-ratio.

Again, the pure amount of munitions fired is enough to make the budget weep:

  • 16x AIM-120C-5 AMRAAM P3I.2
  • 8x GBU-24E/B Paveway III GPS/LGB [BLU-109A/B] (somehow there wasn’t an option for a serious bombload with Paveway IVs in the database, would have been interesting to see how those would have fared against bridges)
  • 70x Meteor
  • 3x Sky Sabre [Land Ceptor]
  • 56x SPEAR 3
  • 72x SPEAR EW

For the Russian side, the expenditure was even worse:

  • 2x R-73M
  • 9x R-74M2
  • 105x R-77-1/R-77M (!)
  • 8x R-37M
  • 6x 9M338K (Tor)
  • 30x 9M317 (Buk)
  • 4x 9M311-M1 (Tunguska)
  • 48x 9M83M (S-300V4)
  • 32x 9M96D (Gorshkov S-350), i.e. the whole complement of missiles
  • 4x 57E6 (Gorshkov Pantsir)
  • …and a ton of rounds ranging from 23 mm to 130 mm in diameter

So where does that leave us?

Well, the Typhoons did better than the F-35 with both the air-to-air ratio and the number of bridges hit roughly similar – though the Typhoons did not manage to get through to hurt any of the bridges at Vyborg, of which the F-35s brought down one. Would it be possible to bomb the bridges in Olonets and use Storm Shadows to get the southern ones?

The first four CAP birds do an excellent job, bagging eleven enemy fighters with their 28 Meteors, and escaping the enemy hail of missiles (25 R-77M/R-77-1 and 10 9M96D) – I must say that if the survivability of the Typhoons in the face of enemy missile fire is anything like this in the real world, I am highly impressed. An interesting detail is that the Typhoons are able to pick out the Su-57 at roughly max weapons range (Meteor) through a combination of Pirate and DASS, i.e. not by using the E-SCAN radar.

After that, things get more harsh. The SEAD-birds and second CAP-wave push deep into enemy territory, and manage to temporarily achieve something resembling air dominance in the airspace covering the whole operational area. Unfortunately it is rather temporary, and poor timing on my part between bomber wave and the overconfident fighters means that the second enemy fighter wave manage to bag a number of Typhoons. However, the bombers managed to get through without issue and bring down four bridges on the Olonets Isthmus (before being shot down by chasing enemy fighters) and with the earlier losses of aircraft that penetrated deep into enemy territory a total of eleven Typhoons were lost. While that is just one better than the earlier case, four out of five bridges around Vyborg was brought down by just eight Storm Shadows (I fired double missiles per bridge, turns out all got through and half the missiles found an empty spot on the map upon arrival) to add to the four bombed bridges, the enemy losses to both aircraft and ground systems was also significant (4x MiG-29K, 8x Su-35S, 7x Su-57, 6x MiG-31BM plus the Nebo, 2x 9A331 TELAR (Tor), 3 9A83M TELAR and a 9A84 LLV (S-300V4), 4x T-72BM).

The Typhoon being able to hit the deck and then take the elevator back up again is a huge benefit when it comes to evading incoming missiles

The Typhoon did surprise me. There’s lots of talk about how it shines in the air-to-air role but suffers in the air-to-ground compared to some of the competition, but the wargaming really drives home the point about how the combination of serious sensors and stellar aerodynamics means that even when the first layer of the survivability onion is penetrated, failing at “don’t be seen” doesn’t mean all that much if the enemy struggle with “don’t be hit”. I also know that quite a few of the losses in the last run could have been avoided if I had had a better handle on things, so even if the final score sheet wasn’t as impressive as I was aiming for, I certainly feel that the aircraft is a solid performer.

Rafale- Everyone gets a dual-seeker

The first thing that strike me when sending out a four-ship of Rafales from the north to try and drag aircraft away is that RBE-2AA radar is able to pick out and identify vehicles on the ground. Not sure if this is indicative of the radar being better than some of the alternatives, or whether there is some checkbox that I’ve marked differently (CMO has quite a few…), but it certainly helps with the situational awareness considering both the F-35 and the Typhoon (to a lesser extent, but still) struggled with creating a proper picture of which enemy ground units are where.

The RBE2 AESA-radar is instrumental in getting a good picture on the ground. In the end it lead to all struck ground targets being either bridges or GBAD-related, with no munitions “wasted” on tanks.

Another interesting detail is that the CAP-birds first choose to use their MICA NG (both IR- and active radar-versions), saving the Meteors.

The Rafales aren’t as overwhelming when it comes to air-to-air as the Typhoon was, and in the intial engagement two of the four fighters are brought down in the first exchange. That’s also where the good news ends for the Russians, as seven of their own are brought down (2x MiG-29K, 4x Su-35S, and a single Su-57). The weapons and sensor range means that only eight R-77M are fired by the enemies, before they have their hands full with evading the incoming MICA and Meteors.

The rather complex main strike

However, the main strike with the SEAD-birds pushing out in front fare significantly better when it comes do dodging incoming missiles. My guess is that  having a larger number of friendly shooters leave the enemy unable to provide proper mid-course guidance, making their fire less accurate, when they have to keep dodging incoming weapons. It is also notable that as opposed to the Typhoon’s ASRAAM – which in effect never was used in the runs I did – the MICA is frequently used by the Rafales thanks to its range.

With no JSM for the Rafale in the database, the main SEAD-weapon is the SBU-54 AASM which sport a 250-kg bomb equipped with glide kit and dual-mode GPS/IIR-seeker. The number carried per aircraft is smaller compared to SPEAR 3 or the SDB-family of weapons, but the bang is still nice and the dual-mode seeker means that mobile targets are valid. Two MiG-31 appear and create a bit of a bad feeling at very-long range, downing a strike aircraft and a SEAD-bird, but the SEAD-effort is by far the best seen so far.

The range of the MICA NG is rather impressive, as is evident here with strike aircraft going feet wet over northern Lake Ladoga (note that Tacview doesn’t draw water in lakes) firing on a fighter heading south over the outskirts of St Petersburg

The end result I dare say is the best seen so far, despite the feared long-range GBAD batteries finally managing to score a few successes against escorts pushing deep and the SCALP-EG somehow seemingly having worse luck with defensive fire compared to the Storm Shadow. The air-to-air game isn’t as impressive, with “only” 17 fighters brought down (6x MiG-29K, 7x Su-35S, and 4x Su-57) against a loss of seven Rafales, but in the air-to-ground arena a total of 13 targets are wiped out (including three of the Vyborg bridges) and the SEAD-side is by far the best yet (the Nebo is dead, as are four 9A331 TELAR (Tor), two 9A310M1-2 TELAR and a 9A39M1-2 LLV (Buk), and four Shilkas. The usefulness of the presumably cheaper MICA (65 fired) also means that just 13 Meteors had to be used for that effect, and the air-to-ground munitions was dominated by the AASM (27 1,000 kg ones for bridges and 30 250 kg ones for SEAD) with an additional eight SCALP-EG for the best defended bridges.

Super Hornet/Growler – Hear me roar

So getting back to where it all started, with the Super Hornet and Growlers. I assume that the losses earlier in the conflict would have been smaller for the Growler-fleet, and that they would have been prioritised in this major strike mission, so the order of battle is 10 EA-18G Growlers and 18 F/A-18E Super Hornets. It is immediately obvious that sending four-ships of Super Hornets out on CAP just isn’t doable, as that occupies too many strike aircraft. At the same time, the plan is to ensure that they stick close to the Growlers for self-protection, better situational picture, and for added firepower. Note that while a Growler in real-life can be used for regular strike missions, the database does not allow for non-SEAD/DEAD-associated lodas.

The first step is simple: put a pair of Growlers escorted by a pair of Super Hornets over south-eastern Finland to get a good overview of the situation.

The Growlers take off, and the magic happens.

You emit, the Growler knows you are there

Immediately they start getting fixes on the different fighters and ships in the area. The “I know everything”-feeling Michael Paul talked about is certainly there.

The only problem with the feeling is that we are feeling slightly overwhelmed, with at least 17 enemy fighters currently airborne. I decide to launch more fighters and temporarily withdraw my current two northwest of Jyväskylä. The fighters trade positively, scoring 11 kills (and forcing a Su-57 down within range of a Land Ceptor battery, which score a twelfth kill!), but lose seven aircraft of their own. Clearly more firepower is needed in the first wave.

Trying to seize whatever momentum I have, I launch an all-out strike with SEAD-escorts. Unfortunately, most of the SEAD-escort figure the SAG is the most menacing target for AARGMs, and while they aren’t exactly wrong, the ships easily swat the missiles out of the air with a Pk close to 1.0. On the positive side, JSOW C-1 turn out to be a surprisingly effective weapon even in the face of the heavily defended bridges of Vyborg, and four are brought down in quick succession. Killing bridges without the need for cruise missiles is nice!

With sixteen own aircraft lost (against 15 enemies, plus the aforementioned four bridges), it’s time for another run to see what could be done better.

The biggest conclusion from the Super Hornet run is that you do need a combination of better situational awareness and longer range to be able to reach the large positive kill ratios wanted by the Finnish Air Force. The AIM-120D doesn’t cut it unless you are able to hide, but the combination of AIM-260 and ATFLIR ensures that the Super Hornet is right back in the game

A few runs later and it’s clear I can’t get the AIM-120D equipped Super Hornet to work as I want it to. The issue isn’t the ground threat as much as the fighters, and compared to the Meteor-equipped eurocanards it simply can’t take on the Russian Air Force and come out with the same kind of kills. This is interesting, as it runs counter to what IsoT said, who claimed that the enemy fighters weren’t an issue. A notable difference was that he used the AIM-260 JATM, which might or might not be coming by 2030.

Just changing the long-range weaponry on two of the four-ships that are flying CAP  while letting the rest soldier on with the AIM-120D made a world of difference. The Super Hornets and Growlers scored 18 kills (6x MiG-29K, 3x MiG-31BM, 5x Su-35S, 4x Su-57) for a total loss of six Super Hornets and no Growlers. Despite the majority of the aircraft flying around with the AIM-120D, twice the amount of JATMs were used (24 vs 12), which tells something about how many earlier shots can be taken and how much a difference that makes also when it comes to the amount and accuracy of the return fire taken. With 16 JSOW, 16 AARGM-ER, and 8 GBU-31 (1,000 kg JDAM) a total of six bridges were brought down (four at Vyborg) and the enemy air defences were seriously reduced (2x Shilka, 2x Pantsir-SM, 3x 9A83M TELAR, 2x 9A82M TELAR and one 9A85 LLV from the S-300V4).  The combination of JSOW and AARGM turned out to be a winning concept against SAMs that stuck to their EMCON and relied upon neighbouring batteries providing the radar picture.

My findings does run rather contrary to those of IsoT. I struggled more with the enemy air than ground defences, and while I didn’t see much in the way of highly effective jamming (though to be honest that might simply be down to not having perfect information, it might be that the enemy operators were sweating and had to rely on secondary systems), the Growlers and Super Hornets were quite able to kill off enemy SAMs if not at will then at least reliably.

Gripen – I have a skibox

As soon as the GlobalEye turn on its radar, it is evident that the situational picture is on another level. I have a full picture of not just where the enemy is, but of who the enemy is as well. This is certainly a step up above the earlier aircraft, and the rather strict EMCON the enemy has been clinging to won’t help.

The level of detail picked out is just on another level compared to everything else tested in this series of scenarios

Unfortunately, the database for the Gripen does not reflect the air-to-ground weaponry offered to Finland in the slightest. No SPEAR, no Taurus KEPD, no LADM, no bombs heavier than 250 kg. Instead I get the BK-90, the AGM-65B Maverick, the RB 15F (Mk 2), and 135 mm unguided rockets – all of which are either already withdrawn or about to be replaced. The original SDB is available in the form of the GBU-39. The available pod is the Litening III, also most likely not what is offered for HX. The air-to-air arena is better, but there’s no option for the seven Meteor short-range loadout, with six and a drop tank being the maximum.

This causes some issues to be perfectly honest, but let’s see if the 39E can bring enough Meteors to the fight to clear away the enemy fighters, and then we’ll see if we can take it from there.

The AI is a bit slow to react to the enemies entering the prosecution area (I believe this being due to the Gripens first having to enter the designated CAP-patrol box before they begin actively looking for intruders), but soon missiles start flying in both directions

The Su-57 turn out to be something of an issue, as to begin with they have a bit of headstart from how the mission is set up, but also because of the inability of either the GlobalEye or the Gripens to get a good long-range radar lock. It isn’t a major issue, the combination of ESM and IRST systems do pick them out at comfortable distances, but it does give the enemy the first shots.

A quick reset to give the AI somewhat more sensible instructions, and we’re off to the races.

As has been seen in a few scenarios, taking off from Helsinki-Vantaa isn’t necessarily a great idea. The lead fighter is quickly brought down, leaving the wingman to temporarily fight off twelve enemies, half of which are Su-57s. It goes surprisingly well, and the Meteors bring down four MiG-29K before a Su-57 manages to close in and finally take it down with a R-77M at close range.

Launching from Helsinki in the middle of a bunch of Russian fighters rushing north is a bad idea

The rest of the battle is somewhat divided, as both sides lose aircraft. An interesting detail is that the Meteor-evading enemy fighters get down to lower altitudes, where two Finnish SAM-batteries combine to bag two fighters. Still, 3:7 is not the kill ratio we were looking for.

With the enemy fighters at least temporarily pushed back, I launch the strikes. As I have a good fix on the GBAD-positions around the bridges at Vyborg, I task the SEAD there with greater detail, while further north I again rely on a more general Wild Weasel-y thing of going there trolling for SAMs and then trying to kill them. Again, with nothing more lethal than GBU-39 for SAMs and GBU-49 for the bridges I don’t have particularly high hopes of actually get anything nailed down on the score card. However, sending fighters into harms way should say something about the survivability of the Gripen.

It doesn’t begin particularly well, with two Su-57 jumping the four northern SEAD-birds immediately after take off before their escorts have been able to form up. After that things temporarily get better as the CAP-fighters bag a few enemy aircraft, before they quickly turn south again. The Vyborg SEAD-strike with GBU-39s is surprisingly effective, bagging two Pantsir-SM and a total of six different TELAR and LLV in the S-300V4 battery. At the end of the day, there is no denying however, that with none of the strike aircraft carrying Meteors, they are simply too vulnerable to enemy air, and in the end the enemy not only manage to protect all their bridges, but also achieve an impressive 13:22 score (for those interested, the GlobalEye which some state will be shot down the minute the fighting start actually survived).

I feel like the main issue is the inability to fly mixed loadouts with a few Meteors in addition to the strike weapons, which really hurt the survivability of the strike aircraft. The answer for round two is obviously to fly a smaller number of strike aircraft per target, instead letting a number fly heavy Meteor loadouts as escorts (and not let the Helsinki-pair take off in the middle of the enemy fighters).

The SEAD-strike close to Vyborg does go rather well, but there really is a need to launch large number of weapons to ensure some get through

This run works out better. Meteors are nice, although the Gripen does seem to be the aircraft which struggle most with the Su-57. The second time around enemy fighters notice the stream of GBU-39 heading toward the S-300V4 battery, and fire away all their weapons as well as giving the SAM-sites the heads up to turn on their radars and join in the fray. A large number of weapons are shot down, but three TELARS and a LLV are still turned into scrap metal. The northern SEAD mission is able to take down a Buk-unit, nailing two TELARs and an LLV. Unsurprisingly, that still isn’t enough to get through to the Vyborg-bridges, but two of the northern bridges are brought down by the two strike aircraft sent north. The air war land on a 2:1 kill ratio for the Finnish Air Force (11 Gripen against 6x MiG-29K, 3x MiG-31BM, 6x Su-35S, and 7x Su-57). The Gripen was able to avoid missiles at an acceptable rate, though it certainly was no Typhoon.

This would be the place where I would do the final run, combining cruise missiles and bombs and putting everything I’ve picked up so far into practice. However, as noted the Gripen armoury in the database lacks a heavy cruise missile, so there’s nothing to see here. However, considering the similar performance of the JASSM and SCALP/Storm Shadow above, I believe it is safe to say that we would have lost 2-4 aircraft less, and brought down a few more bridges. Similarly, having mixed loadouts would probably have allowed for a second pair of striking aircraft to the north downing another bridge or two. The SEAD might also have turned out better with SPEARs than with SDB, but to be honest the difference likely wouldn’t have been game changing. Yes, a few TELARs more would have been nice, but for this scenario that would probably have been neither here nor there.

Conclusions

So where does that leave us? Neither here nor there to be honest, this is a commercial simulator based on open data, I am a happy enthusiast with no major knowledge on the inner workings of how to set up intelligent air strikes, and there were a number of weapons and loadout options missing from the database. But lets put down a few short notes:

  • To win the air war and get the kind of kill ratio the Finnish Air Force want and need, a combination of better situational awareness and long-ranged weapons is needed. The Super Hornet/AIM-120D struggled in this scenario, but bringing even a moderate number of AIM-260 JATM into the mix turned the tables,
  • Large weapon stocks is a must. Especially in the air-to-air and SEAD-missions the expenditures of weapons is huge. At the same time, the enemy will face similar issues. The impact this will have is difficult to model in this kind of single mission scenarios, but it is notable that e.g. the extremely deadly Admiral Gorshkov in several scenarios ran out of long-ranged missiles half-way into the scenario,
  • The ability to avoid the kinds of missile volleys that the scenarios saw from both fighters and ground-based systems really is key. At the end of the day the Typhoon being able to rely on its superior aerodynamics to avoid missile after missile was one of the big eye-openers to me personally when running the scenarios,
  • MICA NG is nice. It was the only mid-ranged weapon to be really useful (besides the AIM-120D when carried by the F-35A which could use its stealth to get close enough), with next to no IRIS-T, ASRAAM, or AIM-9X having been used. Without knowing the sticker cost compared to the Meteor, I do believe it would be a big benefit in a real scenario,
  • The F-35A managed to get by with the AIM-120D to a much better extent than the Super Hornet, but the small number of weapons really hurt the aircraft when faced with hordes of enemies. It also wasn’t able to strike the most highly defended targets with bombs without suffering serious losses. At the end of the day it was a solid performance, but one not quite as outstanding as one could have imagined,
  • The GlobalEye wasn’t particularly vulnerable, and the Casa didn’t in fact get hit in a single mission! At least in this scenario, as long as there are own fighters it was possible to operate large aircraft in western Finland,
  • There was a number of surprises to me personally when it comes to details. The Typhoon and Rafale performed better than expected (especially considering the lack of JSM for the Rafale), the Gripen somewhat worse, and the Super Hornet being a mixed bag (poor with AIM-120D, good with AIM-260) but no single aircraft was a clear failure or winner.

There’s an endless number of details one could discuss when it comes to whether the scenario was set up correctly, and feel free to run your own scenarios if you have CMO installed, but these were my findings. Again, I probably can’t stress enough that this was done largely for fun and with very limited insight into Finnish Air Force CONOPS and the finer details of the bids now on the table, but it certainly was an interesting challenge!

*Pun very much intended, we are after all discussing SEAD/DEAD-options here.

The Wasp that Refused to Die

The famous (misquotation) of “reports of my demise have been greatly exaggerated” comes to mind when speaking to Boeing. The Super Hornet is certainly undergoing a rough patch, with the SECNAV Carlos Del Toro trying to kill off the plans to keep building brand-new Super Hornets in the next few years, and instead wanting to focus on the F-35C (and to a lesser extent F-35B) which was described as “a far more significantly capable aircraft”. This is something of different message compared to the earlier one which has been making rounds, where people such as the US Navy’s chief of the naval operation’s air warfare directorate, Rear Adm. Andrew Loiselle, have expressed that he would prefer to focus more on the mid-life update (Block III) instead of on new-builds because any new-built Super Hornet with their 10,000 hour airframe will fly past 2055, and they don’t see “a lot of analysis out there that supports fourth-generation viability against any threat in that timeframe“.

Boeing readily admits neither message is particularly helpful for their export campaigns.

However, one has to give Boeing a point in that it is clear that at least some of the messaging is clearly directed a result of domestic politics. The US Navy has been struggling to fit all of its priorities into a defence budget that is flat or potentially even falling, with new classes of submarines and destroyers (to replace both early Arleigh Burkes as well as the Ticonderoga-class cruisers) competing with the Super Hornet-replacement-to-be NGAD for funds. The risk of a delay to NGAD is obvious, especially as the force struggles with how to close a “fighter gap” and the house having thrown out the latest set of USN calculations this summer (this is part of a rather longstanding pattern of the politicians not trusting the US Navy to make sound long-term planning decisions and run projects efficiently, which unfortunately isn’t completely unfounded). At the same time, it is rather obvious that some of the Super Hornet’s greatest friends on the hill are representing Boeing-strongholds and might not be guided solely by strategic insights…

Regardless of the outcome, the stated goal of replacing the Super Hornet during the 2030’s does seem optimistic considering the reported state of the NGAD. Crucially, for the time being there also doesn’t seem to be a plan for how to replace the EA-18G Growler with its unique set of capabilities (this is the place where visionaries usually throws in a slide showing a bunch of networked unmanned platforms shooting lightning-shaped datalinks and electronic attack effects between allied forces and against enemies respectively like a latter-day Zeus, but I would again like to state my scepticism of there actually being something resembling a practical plan buried in those slides. The USMC has something a bit more real in the works, but so far that doesn’t include a true Growler-replacement either).

The Juan Carlos I (L 61), an unlikely but apparently not impossible candidate for future Super Hornet operations. Source: Armada Española Twitter

But what is really interesting is the second wind of export interest in the aircraft. Granted Canada apparently has kicked out the fighter (though it has to be said it hasn’t been particularly well-loved north of the border after Boeing dragged Canadian aerospace company Bombardier to court over their jetliners), but the German Super Hornet/Growler-buy seems to have survived the change in government and is reportedly moving forward, and as is well-known there is a strong push to try and get the Indian Navy to see the light and acquire the Super Hornet for their carrier operations. More interesting was Boeing disclosing that they are in talks with Spain about the Super Hornet (almost certainly related to the same EF-18A/B Hornet and EAV-8B Matador/Harrier II as the recently revealed F-35 discussions), as well as stating that the UK have expressed interest in Super Hornet STOBAR testing conducted for the Indian Navy efforts (and where this  testing could lead). Notable is that the flight deck of the Queen Elizabeth-class compares rather well with that of the the INS Vikramaditya when it comes to length and area (though the designs obviously differ), and while it isn’t angled, the Juan Carlos I with its 201.9 m long and 32 m wide flight deck actually matches the 198 m long and 30 m wide angled recovery deck and 195 m long take-off run of the INS Vikramaditya. Speculations about a STOBAR-carrier in Spanish service may hereby commence (though I will warn you that the step from discussing the theoretical possibility to actually converting the vessel is a rather drastic one).

Regardless, there is a non-trivial risk that any Finnish Super Hornets will be the last new-built rhinos rolling off the production line, and the Finnish Air Force has been strongly stating the importance of being aligned with the main user (to the extent that the Swedish Air Force threw out their own long-term planning and instead adopted the Finnish set of requirements in order to ensure that the JAS 39E remained a viable alternative). So how is Boeing intending to work around this issue?

To begin with, while the Super Hornet likely will bow out of USN service before the Finnish Air Force retire HX, as mentioned the Growler will likely soldier on for a bit longer (again, compare the A-6 Intruder retiring 22 years before the EA-6B Prowler), allowing for updates made to keep that platform modern to support exported Super Hornets. The German order is also a key piece of the puzzle (I mean, does anyone really think that the Germans will retire any platform acquired before having worn it down? We are after all talking about the country that flew F-4F Phantoms in central Europe until 2013).

But the big news is the Open Mission Systems, which allows for what Boeing describes as containerised software. Behind the jargon lies a principle through which the software is written once, put into a so called fusion app (the ‘container’ in ‘containerised software’), which then allows it to be pushed out to a number of platforms – manned, unmanned, fixed-wing, rotary, you name it – simultaneously through making the software hardware (and even manufacturer) agnostic.

Illustration from Boeing’s International Fighter Conference briefing describing the principle. No surprises regarding the platforms included. Courtesy of Boeing

While the principle is significantly easier to implement on a PowerPoint-slide than in real-life, successful lab testing with containerised fusion algorithms in the F/A-18 Block III and the F-15EX has taken place, and plans are progressing for flight demonstrations. If the program develops as expected, it would provide the opportunity to piggy-back F/A-18E development onto that of e.g. the F-15E(X), which would grow the user base and spread development costs significantly.

But it’s not just the aircraft itself that are easily upgradable. Michael Paul of Raytheon Intelligence & Space is happy to explain how the NGJ-MB pods are not only cutting-edge today, but that their open design ensure they will stay that way.

The current ALQ-99 jammers made their combat debut in Vietnam, and although it has undergone numerous upgrades and still is a competent system according to most accounts, there’s no denying that it’s greatest days are already behind. The new family of jammers, the mid-band unit of which will be first one out and which passed Milestone C (current version accepted as production standard) earlier this summer, will bring a serious improvement. Trying to find a suitable comparison, Paul struggles a bit. “It’s a level above going from mechanically scanned radars to AESA-technology,” he explains. “It’s a significant leap just because of its AESA-technology, but then you add the power.”

The EA-18G Growler at Tampere-Pirkkala during HX Challenge. Note the large (mock-up) NGJ-MB under the wing. Source: Own picture

And while having an AESA-array means that you can do all sort of nice stuff – both Lockheed Martin and BAES are pushing the fact that they are doing some serious electronic warfare stuff with their arrays – the power and dedicated subsystem really takes things to another level. While a modern AESA-radar for a fighter can give self-protection at levels earlier only dedicated platforms could provide, it is still very much a case of self-protection. Because the dedicated platforms have also stepped up their game. The fact that the NGJ isn’t just a Naval program but sorting under joint oversight in the DoD structure speaks volumes as to the importance the Pentagon places on the program, even while at the same time discussing the need for fifth generation aircraft (the push to integrate the pod on USAF fighters is another datapoint). The NGJ allow the Growler to do what Raytheon describe as “force-level protection”, and while the exact capabilities of the pod are classified, it is significant to note that the Pentagon has been placing an ever increased importance on the electro-magnetic spectrum (EMS), and being able to treat it in the same way as other more familiar terrain – doing manoeuvres and conducting fires in it, so to speak.

This is what modern day air operations looks like

Achieving EMS-superiority will be a key mission for any air force in the future, and the Growler is well-poised to support any force attempting to do so.

What the design of the pod brings with its increased power output is the ability to handle wider spectrums and go straight to the key nodes, which in an integrated air defence systems might or might not be the shooter – it might as well be a surveillance system standing way back, feeding information to silent SAM-batteries operating missiles with their own guidance systems (active radar or IIR). But while the pod is great, the integration of the two-pod shipset with the mission systems of the aircraft really is where the magic happens. The “incredibly integrated” nature of the shipset means that the Growler and the pods are sharing data back forth, including from their own sensors but also from third-party sources (including via satellite), together creating the situational awareness that the Growler is known for, the “I know everything”-feeling as 9-year Growler veteran (and Prowler before that) Michael Paul puts it. The location of the arrays on the pods also means that the aircraft is able to cover the strikes throughout their mission – either from stand-off ranges or as penetrating platforms.

A ‘red shirt’ checking a Sidewinder mounted on the wingtip of a F/A-18E Super Hornet of VFA-106 ‘Gladiators’ aboard the USS Dwight D. Eisenhower. For the time being the Supers still occupy a prominent role on the flight deck of any US carrier. Source: @FlyNavy Twitter

While the days of the Super Hornet might be numbered, no one quite seem to know the exact number for sure. It also has to be remembered that many of the particular drawbacks quoted by the US Navy center on how it would like to operate in a China-scenario. The situation in Finland is markedly different in a number of ways, including the significantly lower emphasis placed on range. The very real risk of losing support from the main user toward the last decade or two of the aircraft’s career is no doubt a significant drawback, but at the same time the offer here and now would fit the Finnish Air Force extremely well both as a capability but also in the FDF’s general culture of being somewhat risk averse and preferring mature systems and a continuous iterative development rather than radical steps. And as icing on the cake comes the Growler, which not only would be a strategic assets for both the political and military leadership throughout the span from peace through crisis and into war, but also a huge political signal of the close bond between Finland and the US.

As Paul noted:

It likely wouldn’t have been possible to offer this ten years ago.

One Last Hurrah – Finnish Media visits an HX-contender

It’s getting difficult to remember how it all started back when HX was just a working group thinking about if Finland needed a new fighter, but seven years later here we are, perhaps a month away from the decision.

But there was still room for one last media trip, this time by Saab who used their corporate Saab 2000 (the particular example, SE-LTV, being the last civilian airliner ever built by the company) to fly a whole bunch of media representatives for a day-trip to Linköping to one more time share the details about their bid, with the GlobalEye getting much of the attention.

And it’s hard to argue with this. Yes, the Gripen sport a number of nice features from a Finnish point of view, but what really sets Saab’s offer apart from the rest is the inclusion of not one but two airborne early warning and control (AEW&C) aircraft. The capability in itself would bring a huge shift in Finnish air operations regardless of whichever fighter would be at the other end of the chain (no, your favourite fighter isn’t a “mini-AWACS” just because it has a nice radar, you still won’t leisurely be cruising around on 10 hour missions gathering intelligence and keeping an up to date air picture while paying biz-jet operating costs). The value of the kind of persistent situational picture provided by a modern AEW&C platform is hard to overstate, especially in a Finnish scenario where the attacker will have numerical superiority (meaning that the decision about when and where to send Finnish fighters will have to be calculated carefully to ensure it is possible for them to do something that actually has an impact on the battle), the flat and forested nature of the country (meaning that there is a lack of suitable mountaintops on which to place groundbased sensors, instead anyone operating at very low levels will enjoy lots of radar shadows from which they can sneak up on Finnish targets), and the very joint nature of any major conflict stemming from the long land-border and the right flank and rear being composed of water (meaning that any higher-level situational picture need to take into account all three domains).

It is difficult to express exactly how much of an asset a modern AEW&C platform would be for Finland, and that include both the Air Force but also the FDF as a whole as well as the government. And for the foreseeable future, the only realistic option for a Finnish AEW&C platform would be if Saab takes home HX. Picture courtesy of Saab

Crucially, the value of the GlobalEye as an intelligence gathering platform for everything from the operational level commanders to the highest levels of political leadership is unprecedented in HX (and arguably within the FDF as a whole, the SIGINT CASA is nice, but it fills a more niched role). With two GlobalEyes, building a baseline situational picture in peacetime is possible (even more so if data is shared with the two Swedish aircraft coming), and that include both airborne and ground traffic, as the aircraft sports a ground moving target indicator mode (GMTI) making it possible to see any vehicles moving on the ground (the cut-off being rather low, in the neighbourhood of 20 km/h). The GMTI doesn’t create individual tracks for every echo due to the huge amount of vehicles moving at most roads during any given time (though it is possible to manually start tracks for interesting vehicles) but instead the operator will follow general flows and densities. Needless to say, keeping an eye on vehicle movements around garrisons and on exercise fields or counting trains (feel free to start measuring how much of the Oktyabrskaya Railway is within say 300 km of the border) would be a huge boost to the Finnish intelligence gathering work and a huge benefit for all branches of the FDF and the government it supports. Having this baseline situational picture and being able to detect changes in it would be of immeasurable value to both the civilian and military leadership in any kind of crisis, and there is no other single measure that would provide as much bang for buck as getting an AEW&C when it comes to this aspect – and the only way to get it into the budget is through Saab’s HX offer.

(The EA-18G Growler does share some of the same traits in this regards in raising the peacetime intelligence gathering capabilities to a significantly higher degree than ‘ordinary’ fighters, but when stuff stops emitting the value decreases rapidly)

This is an aspect that – even if not completely forgotten – has received surprisingly little attention in media. It might be that the inclusion of the completely new capability and the ramifications it has have been difficult to grasp, but in any case it is likely to have a significant impact on the wargames.

Interlude: in some of the darker places of aviation forums there have been people claiming that Saab is trying to sell a fighter that in fact isn’t the best one out there through packaging it with an AEW&C platform. Regardless of whether it is correct or not, that is a completely moot point. The Finnish Air Force isn’t looking for the best fighter, the Finnish Defence Forces is looking for the best capability they can get for 10 billion Euro (and 250 MEUR in annual operating costs), and if pairing 64 JAS 39E Gripen with two GlobalEyes provide a greater combat capability than the competing packages, how Gripen fares in one-on-one air combat against some other fighter isn’t interesting in the slightest to Puranen or his team.

The GlobalEye is more or less everything you would expect from it. Based on the Global 6000, it leverages the comfort of the airliner to ensure that crew can handle the missions that can go “well above” 11 hours. This means a rest area for the relief crew members, as well as cabin pressure and noise levels on par with the regular business jet. The top speed is slightly reduced due to drag from the radar, but the range is in fact more or less the same as the lower and more economic cruising speed roughly cancels out the increased drag. The business jet philosophy of the baseline Global 6000 also brings with it a lot of other nice details, such as dispersed operations being aided by a very high redundancy of key systems and small logistical footprint (the airliner is e.g. equipped with four generators to ensure that it isn’t stopped by a generator failure. On the GlobalEye that means that no additional power sources are required, and the aircraft can in fact remain fully mission capable even if one generator is lost). For a Finnish scenario, a key detail is that the sensors can be initiated already on the ground, meaning that the aircraft is operating as soon as the wheels are up. The five operators can either do general work or specialise in different roles, such as air surveillance, sea surveillance, the aforementioned GMTI-mointoring, ESM/SIGINT, and so forth. Displays in the relief area and in the cockpit allow for the relief crew and pilots to follow the situation, which is valuable e.g. if new threats appear. The exact sensor setup can be changed according to customer needs, but can include everything from the ErieEye-ER radar, a dedicated maritime radar, AIS, DSB, IFF, and classified ESM systems.

Now, an AEW&C alone doesn’t win any wars, but the Gripen is no slouch either. Much has already been said on this blog, but the baseline fact that Gripen from the outset is made for the very same concept of operations that Finland employs certainly gives it something of an edge. Worries about size and range are also of relatively minor importance in a Finnish scenario, and instead factors such as 40% less fuel consumption compared to legacy Hornets (and with that obviously also significantly reduced exhaust emissions, which should make certain government parties happier) play a significant role when laying out the budget for the upcoming years.

While the usage of a very much originally naval fighter has proved a great success in Finland, and  while several other countries have had good luck operating “normal” fighters in the high north, there’s no denying that Gripen is the only fighter (honourable mention to the MiG-31, but we’re not getting that one) from the outset made to feel at home in the subarctic conditions. Picture courtesy of Saab

Saab was happy to go into some detail about how they envision missions to be flown, illustrating with a typical high-end SEAD/DEAD mission against S-400 batteries where the aim was to take out two 92N6E “Grave Stone” radars. The batteries where in turn protected by a number of other ground-based air defence systems, including a Nebo-M (no doubt chosen for the express purpose of raising questions about the viability of the F-35 in the same scenario), Pantsirs, and a pop-up Buk-M1-2 (or M2, just the ‘SA-17’ designation was shown). In addition two pairs of Su-35s were flying CAP under the guiding eye of an A-100. The approach for this mission was rather straightforward. Two Gripens did a hook to the north where they feigned an attack through using the EAJP EW-pods and swarms of LADM cruising around presenting jamming and false targets, thereby drawing two Su-35s north.

At the same time the main striking force consisting of a four-ship Gripen with 7 Meteors and 2 IRIS-T on each acting as fighter escort and two additional Gripens doing the actual strikes with six SPEAR and six LADM each (plus pairs of Meteors and IRIS-T for self-defence) headed east towards the target. With the LADM and the internal EW-systems providing jamming and the escorting Gripens dealing with the fighters (of which one pair was out of position, as you might remember), the strike pair launches their  full dozen of SPEARs which, together with escorting LADMs, go out and hunt down the two radars. Not even the pop-up Buk appearing behind the strike aircraft can ruin the day.

Now, the scenario above is both rather fascinating in that Saab was ready to go into such detail, and not at all surprising since that is more or less exactly how nine aviation geeks out of ten would have set up the mission given what we known about Saab’s talking points and the weapons and stores offered to Finland. Perhaps the most interesting detail is that Saab thinks six SPEAR are enough to take down a defended S-400 radar (when escorted by EW-missiles). However, what on the other hand was interesting was who was telling the story.

Mikko Koli in a 39E Gripen simulator, note the large WAD-display up front. In real aircrafts, he has now also logged time in the front-seat of the JAS 39D two-seater. Picture courtesy of Saab

Meet Mikko Koli, pilot and operational advisor to Saab since this spring when he retired from his job as test pilot for the Finnish Air Force. As a retired major, he may be outranked by many of the other advisors involved in different parts of the HX circus, but he brings some serious street cred instead. Most of his career was spent doing a fifteen year posting as an air force test pilot, mainly focused on the F/A-18 C/D Hornet and the upgrades it went through in Finnish service. This include different roles in both MLUs, but also being among the key players in the AGM-158A JASSM integration project, which culminated in him being the first Finnish pilot to release a live JASSM.

Which definitely is cool, but don’t let that distract you from the main story: he is a seasoned test pilot who has spent years studying and implementing how to get the best out of a fighter in a Finnish context. When Koli decides to spend his retirement days at Saab, that says something. And when he says that he trusts that their bid is “extremely strong”, that is something else compared to Saab’s regular sales guys.

What Koli decided to focus on, in addition to guiding the assembled Finnish media through the scenario described above (together with retired Swedish Air Force pilot Jussi Halmetoja) was certainly things we have heard before, but with a bit of a different emphasis. The “superior situational awareness” thanks to advanced networking and “excellent” human-machine communication of the aircraft are talking points we’ve heard from Saab before, but they often take something of a back seat when non-pilots talk. Discussing the “live chain” is also a refreshing change to just talking about the kill chain, because as we all know actually living and flying a working aircraft is the first step to being able to actually do something useful. And Koli also in no uncertain words explained what he thinks about the GlobalEye.

GlobalEye pays itself back at any level of a crisis, both for military as well as for political decisionmakers [… It is also] a very capable SIGINT-platform

The JAS 39E Gripen is rapidly approaching operational service, but so is the scheduled date for first aircraft delivery under HX. Picture courtesy of Saab

Speaking of JASSM-integrations, I would be wrong not to mention Saab’s latest talking point when describing the size of their weapons package. Readers of the blog might remember that I had some questions regarding the numbers presented during the BAFO release, when it sounded like the weapons offered were worth 1.8+ Bn EUR, until you read the fine print, at which point it sounded more like 1.35+ Bn EUR. Now Saab was back with the comparison “more than ten times the total publicly quoted costs of the Finnish JASSM-project”, which they confirmed referred to 170 MEUR for the JASSM integration and missiles, making the weapons package coming with the Gripen worth 1.7+ Bn EUR. That is a lot, and considering the 9 Bn EUR acquisition cost also include the aforementioned two GlobalEyes, puts things into scale. An interesting detail is that the JASSM-project as mentioned included the integration costs as well, with Saab now taking care to point out that all weapons integration costs are found under other budgetary lines, and the 1.7+ Bn EUR figure just covers the series production and delivery of the munitions.

Modern weapons are expensive, but that is indeed an arsenal you can go to war with without having to worry about every single missile. At least not initially.

With the Norwegian budget figures having raised more questions than the Swiss decision answered for the F-35, and the US Navy trying to kill off the Super Hornet production line faster than you can get a hornets nest fully cleaned out from a redcurrant shrub (which for me is approximately two weeks of time based on empirical testing), the Finnish skies are perhaps looking ready to accept a non-US fighter again. In that scenario, the Gripen is certainly a more likely choice than the two larger eurocanards, but at the same time questions of maturity surround the aircraft that is bound to reach IOC with an operational unit only in 2025 – the same year the first HX fighters are to be delivered. Basing the 39E on the proven 39C/D-platform certainly helps, and the decoupling of flight critical software from other systems seems to have been a winning concept considering the pace at which the test program has advanced (this includes software updates on flying aircraft every four weeks on average up to this point of the program). However, with nine aircraft operational and the first Batch 2 (series production standard) already off the production line, Saab just might be able to cut it in time.

And there’s always the GlobalEye.

An interesting detail is that as the GlobalEye is optimised for endurance, the aircraft is expected to most of the time operate with a 4.8° angle of attack, meaning that the radar is tilted downwards the same amount to keep it horizontal for optimal performance (as are the operator positions inside aircraft, including chairs, desks, and displays). Picture courtesy of Saab

A big thank you to Saab for the travel arrangements.

Aiming for a Joint Target

With Sweden looking at replacing all of their squad firearms, and Finland looking at acquiring a new sniper rifle/designated marksman rifle, the news of Finnish-Swedish defence cooperation that included assault rifles among a number of other weapons understandably raised some questions earlier this year. To shed some light on the issue, I contacted the Swedish Defence Materiel Administration (FMV), where brigadier general Mikael Frisell (Director Land Systems) and lieutenant-colonel Per Norgren (Head of Weapons and Protection department, Land Systems) were happy to talk over the phone and explain where the Swedish project is currently, where they expect it to go next, as well as how the cooperation with Finland plays into the needs of the Swedish Armed Forces in this field.

While there is a need to replace the current armoury, this is also happening as the Swedish Armed Forces in general and the Army in particular is growing. Four new regiments (two infantry, one artillery, and a ranger regiment) are being created this fall, and that directly impacts the Land Systems division. “There’s lots of funding, lots of things to be acquired,”Frisell explains. “We are under pressure to deliver as our funding is increasing.” So far this has been visible in a number of different places, with the squad weapons now being one of the major focus areas as simply removing worn weapons from usage isn’t possible when the need for weapons grows. Instead a complete redo of all carried weapons is set to take place. This has in fact already kicked off with the acquisition of the Carl-Gustaf M4 recoilless rifle to replace the older versions in Swedish service back in 2019, and the program is now set to continue until almost all firearms have been replaced during the next ten years.

And this is where cooperation with Finland comes into the picture.

“At the end of the day it is about security of supply,” Frisell explains, noting that while Sweden doesn’t have their own rifle manufacturer any longer, the extremely close cooperation between the Finnish and Sweden armed forces allow them to look at the picture from the somewhat unusual angle of treating Finnish companies as almost domestic ones from a security supply point of view.

But let us start from the beginning.

Sweden has during the last few decades been very much at the cutting edge of small arms acquisitions. The country was second only to the USA in adopting the 5.56 mm NATO as their main calibre (with the FN FNC), was jointly second with Norway after Austria to adopt the Glock 17, was second only to the UK in getting the Accuracy International PM/AW sniper rifle, and in fact beat the USA to adopting the Barrett M82 heavy sniper/anti-materiel rifle as they became the company’s first large-scale customer. However, most of these systems were originally acquired back in the late 80’s or early 90’s, meaning that more or less all systems are in need of replacement by now. Even the FN MAG (locally designated KSP 58) is starting to show its age, though Frisell notes that it is at the back of the queue since “that one is built for eternity”. More or less the only thing not being slated for replacement for the time being is the Barrett.

A Swedish designated marksman in Mali with the AK 4D variant of the G3. Note adjustable stock from Spuhr, Atlas bipod, Aimpoint magnifying kit and CS. This particular weapon also has a Steiner DBAL-A2 (AN/PEQ-15A) laser designator. Source: Joel Thungren/Försvarsmakten

The original plan based on the needs identified by the Army was to first acquire a personal defence weapon (PDW), in other words a modern weapon to fill the role formerly allocated to sub-machine guns. This would then be followed by all assault rifles (including both the FNC/AK 5 and the older G3/AK 4 which is still in widespread use in second-line units) and sniper rifles, and support weapons such as machine guns being at the end of the line with the FN Minimi (KSP 90) going first and the FN MAG following dead last. However, recognising the possibility of teaming up with Finland has lead to a certain amount of reshuffling, with the PDW being pushed back and the sniper rifle as well as the designated marksman rifle (currently a role filled by a modded Heckler & Koch G3 designated AK 4D) instead jumping to the front. This is done on the basis of tagging along on the Finnish K22 project which has seen Finland decide upon the Sako Semi-Automatic Sniper Rifle to be adopted as the new designated marksman rifle and as the new light sniper rifle. However, the plan is significantly more ambitious than simply buying the same designated marksman rifle as Finland.

All categories of weapons have been divided up between the two countries, with either country taking the lead for any individual category. The lead country will lead the development work including specification, testing, and signing the first order which will then include the option for the other country to place corresponding orders at similar terms. Frisell acknowledges that the specifications of both countries are very similar, but he also still sees a need for a more limited set of tests and development work done by the non-lead locally to ensure suitability and to get the userbase aboard – a key feature to ensure that this isn’t felt among the soldiers to be a political choice forcing a system of secondary quality into service. But why bother to begin with, trying to coordinate acquisitions across two countries?

Cross-develop, cross-buy, cross-use – Build trust and security of supply

That’s the guiding principle of the program. On the military side, the ability to cross-buy and cross-develop the weapons saves on cost, while the cross-use ability makes wartime logistics easier. Not necessarily through individual soldiers throwing a spare magazine to their foreign ally in the next foxhole – something that makes for good Hollywood-stuff but rarely is done in practice – but rather through the possibility at the operational and strategic level to redistribute ammunition, weapons, and spare parts according to need. Security of supply is also ensured through creating the critical mass of orders that is large enough to ensure that domestic (kind off) manufacturing is possible to begin with. Obviously, to reach this desired end-state, cooperating already during the development phase is key, as it not only helps push the cost down but also ensures the suitability for both countries. But besides the purely military benefits, the building of trust between the two countries is also important from the wider national security point of view, and here cooperating on this project is yet another building block.

Trials with the Sako TRG M10 in .338 LM (8.6 mm) at the FMV site in Karlsborg earlier this fall. Picture courtesy of BGen. Frisell

In line with that, Sweden has acknowledged that Finland is ahead in the sniper and designated marksman game. Finland has therefore taken the lead here, while Sweden is preparing to do the cross-develop/cross-buy part of the equation. In essence, that means that the eventual Finnish contract will include the option for Sweden to tag along, and that Sweden is doing their own limited tests as we speak. While in Finland the SASR (which I assume will be the abbreviation) will replace the SVD Dragunov and the majority of the locally-built TKIV 85 (a Mosin-Nagant derivative), and in a version with simpler accessories the designated marksman versions of the standard-issue RK-assault rifles, Sweden has somewhat different plans. The plan currently is that the SASR in 7.62×51 mm will replace the AK 4D in the designated marksman role, while at the same time they are doing tests on the Sako TRG 10M in .338 LM as an AW (Psg 90) replacement. This also provide an excellent example as to how the end result might look, with similar weapons but possibly with different accessories and for slightly different roles (Sweden likely not acquiring any of the more highly-kitted out SASR that Finland is looking at for the light sniper role). Notable is that Finland already operate the somewhat older Sako TRG 42 in .338, meaning that both countries would standardise on that in addition to 7.62×51 mm for their accurate rifles. As mentioned, during the signing of the firearms technology MoU this spring Sweden also bought a number of Sako rifles for tests, which have now arrived and are out in the field. The TRG has been tested for roughly a month already, while the SASR tests have just kicked off.

But this is where it gets interesting, as Sweden is looking at the next step in their ten-year plan: the assault rifles.

Let’s give the news up front: at the moment the most likely candidate is a Finnish-built AR-platform in 7.62×51 mm.

Both Frisell and Norberg take care to point out that this is still in the planning stages and no decision has been made on either manufacturer or calibre, but as both the Swedish Armed Forces and FMV have spent considerable time and effort researching the question over the last few years (including no doubt looking into the state of ballistic protection in… certain countries) there are some paths that are looking more probable than others. What tips the scale in the direction of 7.62×51 mm is that the round is seen as having more development potential compared to the lighter 5.56×45 mm. The view is also that most high-quality service-grade AR-pattern rifles are more or less equal once you bring them out in the field, so the need for a big shoot-out is smaller than it used to be when the field of service rifles was more varied (while it wasn’t said explicitly that some designs had been ruled out, the discussion very much centred around the AR). Which brings you back to the question of security of supply. Sako might not be Swedish, but looking at the situation from Karlsborg it is certainly the next-best thing. Frisell notes that any orders require that Sako work out a model for how they will support the Swedish Armed Forces throughout the lifespan of any potential order, but he didn’t sound too worried and I got the impression that it was more a case of working out the details that a serious obstacle.

A few cases of non-AK pattern rifles in Finnish use does exist. Most notable is the use by the professional FDF SOF of the FN SCAR, but another instance is the professional readiness unit of the paramilitary Finnish Border Guard, here shown sporting the HK 416.

An obvious question is whether the Swedes have noticed that there is quite some developments taking place in the US with the NGSW-program set to replace the assault rifles and squad automatic weapons (i.e. the Minimi/KSP 90) with a new family of weapons in a new 6.8 mm calibre? The answer is ‘Yes’, with those involved from the Swedish side having good contacts with their US counterparts both on an agency- as well as on a personal level. The NGSW and associated developments have indeed been followed closely from Sweden, including being briefed directly by their US counterparts. In the end, the technological risk was judged too great for a small country to seek to join the program at this stage. Norgren also noted that “We don’t quite have that time to wait”, as the majority of the FN FNC (AK 5) and G3 in use are getting worn down. However, one thing that is being looked into is the possibility of having the new rifle being modular enough to allow for potentially changing calibre later – or even mid-production as the expected production run for any new assault rifle is expected to be measured in years – in case the 6.8 mm turn out to be a game changer.

Oh, and about that PDW the Army wanted. Sorry to make gun aficionados disappointed, but it seems like the MP7 won’t be coming (besides the ones already in use). For the time being a (really) short AR in 5.56 mm is the frontrunner.

But getting back to the Finnish angle, on the surface this looks like a great opportunity for Sako, and that it undoubtedly is. However, Frisell also made clear that Sweden has expectations other than just getting a bunch of new weapons. As explained, the deal is seen from a security of supply point of view, and that is a two-way street. “We’re not just going to talk about Finnish-Swedish defence cooperation, but actually going out and doing it,” Frisell emphasises. This means that not only has Sako to be able to step up and show that they can deliver the expected quality and volumes, but also that both countries will have to look at the common good instead of at individual benefit. The decision to postpone the PDW and go for the sniper and designated marksmen rifles shows that Sweden is already doing their part, but the bigger question is if Finland will be able to step up when it comes to the assault rifles? As Frisell put it, “We had to adjust the schedule a bit to build the trust […] we hope that the FDF also will have that flexibility”. For some time already the official Finnish line has been that the current AK-pattern rifles can stay in service until 2035 with a decision on the replacement to be made in the first half of the 2020’s. However, those dates originate in a statement made some time ago, and in an interview last month Lt.General Hulkko, the commander of the Finnish Army, stated that continued rebuilds beyond the current number of 20,000 modernised RK 62M “no longer is a cost-effective way forward” for the rest of the Finnish Defence Forces. While still some way out from any hard promises on the part of the FDF, it does sound like Frisell might be getting his wish.

Edit 07-11-2021: It seems the idea is so unexpected that I wasn’t quite clear enough about what the paragraph above actually means:

  • This isn’t a Swedish project to replace their assault rifles, it is a joint Finnish-Swedish project with Sweden as the lead nation,
  • In other words, while neither country has made procurement decision, the expected outcome of any acquisition program is that those involved acquire what the program is all about, i.e. in this case a 7.62 NATO assault rifle (or battle rifle, if you will),
  • It’s easy to forget, but the battle rifle was (and still is in the Swedish home guard) what most western soldiers carried for decades during the Cold War. With modern ergonomics and developments, an AR-10-pattern design (using the designation loosely here, we didn’t talk piston vs DI or anything like that) would likely be miles ahead compared to your regular FAL or G3 when it comes to handling,
  • Yes, there’s a number of reasons why the 7.62 NATO was ditched back in the days. As noted it isn’t yet decided that this will be the outcome, but if FMV after years of studies and weighing the pros and cons say they lean towards going back to it, the message certainly is that based on all available information they feel the benefits outweigh (heh) the disadvantages – the ability to actually kill your enemies also in 2030 most likely key among these.
In a strange twist of faith – the FN Minimi which originally was created with the selling point of being a light machine gun in the same calibre as the rest of the weapons of the squad now seem set to spend its final years in Swedish service as the only 5.56 mm weapon in their infantry squads. Source: Joel Thungren/Försvarsmakten

All in all the development is very interesting, and while both parties are keen to stress that no firm commitments have been made and no orders placed – in fact, the sole FDF comment I got when reaching out was “A mechanism has been created, i.e. the documents have been signed between Finland and Sweden, which enable joint procurements to be made later, but we are still in the planning stage and no decisions on possible procurements have been made” (the statement is still one step above Sako who didn’t answer at all) – the plans does seem to be further along than has been assumed in some quarters (including on this blog) and they look well-thought out both from a national security policy as well as from a military capability point of view. Crucially, while I’ve earlier voiced caution against plans to buy ‘second best’-solutions due to political considerations, modern well-built firearms are generally all more or less on the same level when it comes to lethality. As such this is a field suited to policy cooperation, and the logistical and cost benefits are obvious. Interestingly enough, while there is a certain group of Finnish social media warriors who spend their days questioning whether we can trust the Swedes or whether they just pretend to be out friends to try to coax us into buying Swedish defence equipment, this is very much a case of the opposite. A Swedish buy of assault rifles from Sako would indeed require trust from the Swedes that we Finns won’t leave them out to dry once we’ve cashed in on the export market. Hopefully I read Hulkko’s statement correctly that that is indeed where we are headed – I would very much like to be able to maintain a view of us Finns as a people that can be trusted, both as business partners as well as when it comes to matters of national security.

Oh, and before we go there’s one question all Finnish shooters want to know the answer to: How did Frisell – who by the way has a background as a national level competition shooter – find the SASR to shoot?

Easy to shoot, good quality […] robust, simple, and with high accuracy

Meripuolustuspäivä 2021 – Maritime Defence Day

For the 20th time stakeholders within Finnish maritime defence have gathered to discuss current events and trends in the field, and as usual there was lot to talk about.

The elephant in the room was obviously COVID-19. Not only has it affected the Navy, but it struck at a time when major changes to how voluntary defence exercises are organised was just being rolled out. For the Navy, while the creation of bubbles within the regular conscript training has been the most talked about move, the force has been doing quite a bit more. The key was identifying which are the capabilities that are absolutely crucial to maintain at any given time, and ensuring that these are kept running (lets face it: the FDF could survive a short break in the training of conscripts without any major long-term issues, but the fleet needs to be combat capable and able to sail 24/7 to ensure the integrity of Finnish waters). I leave it as an exercise to the reader to figure out what this might have entailed in practice.

The headline message was that things have worked out. “The Navy is extremely flexible”, as it was expressed, and everyone from the top down to the individual conscripts have understood the size of the challenge, and embraced it. An interesting detail is that the polling of the conscripts transferring to reserve actually shows higher grades when evaluating their services compared to earlier years, a trend visible both in the Navy as well as in the FDF as a whole.

However, even in the midst of the pandemic the sight is set on the future. The leadership of the Navy has taken a number of steps to ensure that the Navy maintains its combat capability and ability to perform the missions it has received into the coming decades. At the core of everything is the missions – anything that does not advance the missions won’t be accepted under the current leadership. This goes for both training as well as developing doctrines fit for the battlefield of the future as well as for the equipment the Navy will bring to it. As an obvious example, the new Gabriel V (PTO 2020) won’t just be a drop-in replacement to the RBS 15 (MTO 85M), as the capabilities of the new missiles are significantly improved and dictates changes to the tactics and concepts of operations to get the best effect out of it. The goal is that in 2032 the Navy will fight according to four core principles:

  • A good situational picture, with both the tools used to create it and the command structure employing it able to withstand the demands of combat,
  • Decentralised operations, with concentrated effect,
  • Mobile operational forces with great firepower and well-trained local forces, both of which are able to withstand the demands of combat,
  • National and international connectivity allowing for common operations.

None of these ideas are exactly new, but on the other hand there isn’t a need to reinvent the wheel. What is new is the realisation that all services – including the Navy – will need organic capability to take the fight to all domains, including not only the traditional three of air, land, sea, but also the information domain and cyber. Another is connecting the Arctic to the Baltic Sea as one operational theatre, in which anything that happens in one will reflect upon the other.

The aggressive attitude present in the principles above are also expressed in the Navy’s desire to maintain the initiative through an active conduct on the battlefield, ensuring that the Navy stays proactive instead of reactive and gets the most out of its resources. This obviously require a highly trained force, and one of the key questions is how to ensure that the force gets an inflow of competent and motivated personnel and conscripts. The challenge is in part a common issue for the FDF as a whole as the number of suitable conscripts is in decline as part of more general societal trends, but the Navy has a special twist to it as it in large parts of the country the least-known of the services.

Which in turn means you have to make sure that the ones you get become – and stay – top-notch.

As the Finnish Naval Reserve and the Navy co-host the event, much of the focus was obviously on the reserve component. The Navy expects the field of reserve organisations to play a key part in ensuring that the capacity of the individual reservists are upheld, and not only in the physical sense, but as important is maintaining the mental and ethical game. Side-note: while FDF has talked about the importance of the first two a number of times, it is refreshing to see the Navy stating the importance of ethical behaviour by their soldiers and sailors, as recent events have shown that even amongst some of the world’s most elite forces when you promote an aggressive can-do attitude and a willingness to take initiative and judge the situation out in the field – extremely valuable traits in any combat unit – there comes a very real risk of not just pushing up to the line, but actually stepping over it.

The other side of what the Navy expects help with is:

Maintaining a naval espirit the corps and a healthy pride

Which sounds jolly nice.

The plan is also to develop further the local forces and their provincial components, to get these further involved in the everyday action as well as in the strategic signalling (the ability to send messages through a show of force without causing an escalation was by the way also mentioned as a crucial capability, and one that places high demands on the flexibility of the naval capabilities and a political willingness to employ these). To allow for this and ensure a motivated reserve force a number of steps are being taken to create interesting positions for reservists within the naval force structure and creating associated training programs to ensure that the know-how continues to grow within the reserve. This include for example looking into the ability to open up training events scheduled for full-time personnel also to reservists. Much of this, like the mantra of being better at taking into account the “civilian” knowledge of the reserve, are things that have been discussed for years, but I did leave the seminar with a feeling that it might indeed be different this time around and that things are really moving forward.

The Cavalry is Coming

Yesterday the Swedish Armed Forces officially stood up the first of their new units announced in the latest defence white paper, as the Norrland Dragoon Regiment was again retook its place as an independent unit. The unit, formerly known as the Army Ranger Battalion, has up until now operated as a semi-independent unit based in Arvidsjaur but sorting under the Norrbotten Regiment based in Boden. Of all the new and reinstated units found in the latest Swedish long-term plan, the Dragoons are without doubt the one most directly beneficial to Finland.

His Majesty King Carl XVI Gustav of Sweden declared the regiment reopened at a ceremony yesterday, 41 years after he did it the first time around when the unit moved to Arvidsjaur from Umeå. Source: Jimmy Croona/Försvarsmakten

But let us start from the beginning. The AJB, as the battalion has been known, should be no stranger readers of the blog. The doctrine of the unit has been described by a person with inside knowledge of its inner workings, and in case you haven’t read that or need to freshen up your memory of it I recommend going back and doing so, as the post isn’t overly long and will be referenced in this text in a number of places.

The reversion to regimental status is to facilitate the growth of the unit to include a second battalion, both of which will also return to their old designation of Norrland Ranger Battalions (Norrlandsjägarbataljoner), though without reverting back to the old doctrine (see the chapter “Special Forces” in this old post for a discussion on the naming conventions). At the risk of slightly oversimplifying the change: by the end of the decade Sweden should be able to put twice as many rangers in the field as they currently can.

It deserves to be reiterated what Jägarchefen wrote in the aforementioned post:

Today’s ranger battalion is in no way tied to a certain geographical area as [the Cold War ranger battalions] NjBat or Jbat Syd were, but is instead used where the capabilities of the unit provides the greatest benefit to the common fight.

However, you don’t have to be a genius to realise that the location of the regiment is influenced by the kind of terrain and climate the unit is to be able to handle. To quote the Swedish Supreme Commander, general Micael Bydén, from yesterday:

The region up here is strategically important from a military point of view. The Cap of the North, the Arctic, many want to be here, and then we need to be able to function and defend ourselves.

To a certain extent it is about the harshest conditions setting the bar. If you can survive and operate in the high north wilderness during winter conditions, you are likely able to do so in southern Sweden as well. However, notable is also how Jägarchefen described the Swedish rangers’ preferred area of operations:

An interesting fact, which often but not always hold true, is that the critical vulnerabilities found deep within terrain held by the opposing force usually create bigger ripple effects if influenced than those closer to the front line. It is these targets, critical vulnerabilities deep behind enemy lines, that today’s Swedish Ranger Battalion is set to work against.

A quick look at the map says that any invader in the central-south of Sweden will have to have advanced quite significant distances until this kind of depth has been created. Certainly it is possible to find critical vulnerabilities close to the front line in case of amphibious or air landings, but these are often then better suited for long-range fires, air attacks, or even some of Sweden’s other special forces, such as the SOG or the combat swimmers.

Swedish rangers during an exercise in the subarctic conditions of the long winter typical of the high north. Source: AJB Facebook

Back to the high north. Sweden is situated at a notable distance from the Russian border, but also in a somewhat unhealthy location as northern Finland and Sweden is directly on the quickest route between the Norwegian port city of Narvik and the garrisons of Pechenga (sporting the combat proven troops of the 200th Motorized Infantry Brigade) and Alakurtti (home of the 80th Independent Motor Rifle Brigade). Sweden is also vary of the possibility of an attacker turning south and fighting their way down the coastline to reach the Swedish heartland – a longer route, but one offering safer lines of communications back to Russia compared to a landing directly in the south or central parts of Sweden (though as an interesting side-note, a Finnish Cold War-era map I recently caught sight of seemed to indicate that the FDF did not see the risk of a left-turn after Tornio as a likely scenario, but instead focused on the Schlieffenski plan in which the forces would advance over the River Tornio and sweep up in an arch to the northwest, reaching the coast on a wide front stretching from Tromsø to Bodø and encircling the Norwegian defenders of Finnmarken. No idea if this really was the dominant opinion within the FDF, and if so during which part/parts of the Cold War).

As such, northern Finland is of great interest to both Finland (obviously) and Sweden. However, for Finland the north will always be a secondary direction compared to the southeast, or even a third if the classic Raate-Oulu direction suddenly starts heating up. That’s not to say Finland wouldn’t defend its northern realms, both the Finnish Jaeger Brigade (note that in Finnish jaeger refers to any kind of infantry, in this case light infantry) and the Kainuu Brigade train units that feel right at home in a meter deep of snow. But there is no denying that the region is huge at over 450 km north to south and over 250 km east to west, and the number of troops available to defend the republic as a whole is limited.

In short, if there suddenly start to occur an influx of BTRs over the Finnish border, there would be gaps in the frontline and likely also in the number of eyes on the ground able to spot and create kinetic effects – either directly or through ordering in fires from other systems.

And this is were a bunch of Swedish dragoons could make a huge different.

A combined squad of rangers during an exercise late last year. The squad consisted of two forward observers, two snipers, a signals specialist, and a squad leader. During the exercise in question the unit managed to find an enemy artillery unit, which it then took out through a combination of sniper fire and by directing own counter-battery fire. Source: Mats Carlsson och David Kristiansen/Försvarsmakten

If Sweden sits on two battalions of rangers, trained in this very kind of terrain and climate – and often in exercises which see Finnish and Swedish units train together – the obvious development in the scenario above is to be proactive and send at least part of the force deep into Finland for both reconnaissance and direct action missions (“Thet är helsosammare binda sin häst wijdh sin Fiendes gärdzgårdh, än han binder wijd hans”, as Rudbeckius said). This is also a relatively low-key intervention compared to mobilising the Boden garrison and sending the armoured units east, but could still make a significant difference for both Sweden and Finland (as well as Norway, in case that is the eventual goal for the motorised columns). As such, this could present itself as both the politically easier and a militarily more flexible option. The obvious requirement is for Finnish and Swedish units to keep exercising together, and for the higher levels of command to hone their skills at fighting a common battle. Luckily, for the time being there seems to be both the political will as well as the investment in time and resources from the armed forces to do just that.

All in all, the most important improvement in the Finnish ability to defend Lappi that has happened during 2021 might have taken place three and a half hours of driving from the Finnish border. Because the odds of the cavalry coming just went up.

CAVS Rolling On

While HX has cemented its place in the spotlight during the last few years, in the background a number of other important acquisition programs have been moving forward without making too much of a fuss – just as you want your major projects to do.

One of these is the CAVS, the Common Armoured Vehicle System, in which Finland, Latvia, and since April 2020 also Estonia, has been aiming to procure a new common armoured vehicle system. The baseline will be Patria’s ungoogleable 6X6 armoured personnel carrier.

The 6×6 prototype being shown at the Ādažu base in Latvia this spring. Source: Gatis Dieziņš / Latvian MoD

At the first stage the aim is to bring into service the standard armoured personnel carrier as well as a command post vehicle, though naturally the family can be expected to be expanded into further versions if and when the platform matures. To understand exactly what is happening, a brief look back at Finnish APC development is needed.

The ubiquitous Finnish armoured vehicle is the originally Sisu (later Patria) XA-180 series and the closely related XA-200 series of vehicles. These rather unassuming 6x6s are rather typical of late Cold War designs, and has achieved a comfortable number of export successes as well as a solid reputation in international operations. The Pasi, as it is widely known, does however suffer from the basic issue of being designed in the early 1980’s, and there is only so much you can do to upgrade it before you run into the obvious question of whether a clean-sheet design isn’t the better option.

‘Shadow’, one of the original Rosomak still painted in green and lacking later upgrades, on patrol in the Ghazni province back in 2010. Source: U.S. Navy photo by Petty Officer 1st Class Mark O’Donald via Wikimedia Commons

Enter Patria AMV, or XA-360. If the Pasi is your basic Cold War APC, the AMV is your typical early 2000’s design, being larger, 8×8, heavily protected, and able to carry both significant firepower and protection into battle. Now, the AMV is by all accounts an excellent vehicle, and has scored a number of export successes during the first decade of its service. It also continued the tradition from the Pasi of building up a solid reputation in international service, in this case with the Poles in Afghanistan. However, this performance didn’t come cheap, and in a twist of irony Finland is in fact one of the lesser users of the platform, with the majority of the vehicles having been produced in Poland under license as the KTO Rosomak. In fact, reports surfaced a few years ago that Polish company PGZ was interested in acquiring the whole land division of Patria.

At home, with the large-scale acquisition of AMV being ruled out (at least for the time being), the FDF instead launched a limited mid-life upgrade programme of the XA-180, bringing the vehicle up to the XA-180M standard and allocating the vehicles to the manoeuvre forces of the Army (these are responsible for creating the centre of gravity of the defence and fighting the decisive battles). It was however clear that this wasn’t a long-term solution.

Exactly what the FDF is up to has been somewhat unclear. A few pre-production vehicles of the Protolab PMPV/Misu have been acquired, but while these obviously can do the job of an APC they are closer to armoured trucks. The same has been the case with the Sisu GTP 4×4, six vehicles of which have been acquired for tests, but these are too small to work as XA-180 replacements. As such, neither is really a direct Pasi-replacement.

The obvious case was to bring the XA-concept into the 21’st century, something which Patria was quick to do once it became clear that the pendulum was slowly swinging back and the 8×8-market was starting to become cramped while at the same time many armed forces wanted a modern wheeled APC that didn’t break the bank.

Latvian Minister of Defence Dr. Artis Pabriks and Janis Garisons, State Secretary of the MoD of Latvia, in front of the 6X6 during this week’s ceremony. Note the additional equipment compared to the prototype, such as shield and mount for a heavy machine gun. Source: Armīns Janiks / Latvian MoD

Enter the 6X6, building on the components of the AMV with the pedigree of the XA. The vehicle sports room for two crew and up to ten dismounts as well as their equipment for a 72-hour mission (or alternatively, three crew and 8-9 dismounts if you want to bring along a gunner). Protection is STANAG 2-level (roughly protection from 7.62 x 39 mm armoured piercing rounds or a 155 mm HE round exploding 80 meters from the vehicle) as standard, but can be increased to STANAG 4-level if the customer so wishes (roughly protection from a 14.5 mm armoured piercing rounds or a 155 mm HE round exploding 30 meters from the vehicle). I’m gonna make an educated guess that you will sacrifice your “optional amphibious capability” if you choose to go down the STANAG 4-route. The vehicle has all the niceties that can be expected, with fully individual suspension, all-wheel drive, ABS brakes, and so forth. As noted, the vehicle ended up chosen as the baseline for the CAVS-programme, and this week the first orders have been placed.

Latvia went all-in, ordering ‘over 200’ vehicles in a joint ceremony in which Finland signed a Letter of Intent for 160 armoured personnel carriers. Estonian plans are still somewhat unclear, but notable is that with the Finnish schedule of placing the main order only in 2023 (with an order for pre-production vehicles this year) the Estonians still have plenty of time to get aboard. A key note on the Finnish decision is that the 6X6 (which by the way locally is known as PSAJON2020, in case you need more designations to keep track off) won’t actually replace the XA-180M in service, but rather allows the manoeuvre forces to trade in their XA-180M for the 6X6 and send the XA-180M to the third-tier local forces (responsible for participating in battle and providing security, surveillance and support to the manoeuvre and second-tier regional forces in their area and assisting them in maintaining contact with the other authorities). The addition of a significant number of armoured vehicles will provide a serious boost to the tactical and operational mobility of these units, but also raises an interesting question about whatever happens with the regional forces, which certainly have an even higher need for APCs? The missing link might be explained by the middle ground of the XA-203 series vehicles, but their number in Finnish service is significantly smaller than the XA-180 series of vehicles, and a number of these are used for other purposes where the heavier and more powerful vehicle is more suitable than the original XA-180, such as vehicles with dedicated signals- or C3-roles. In any case, we know that there are further vehicle programs coming in the form of e.g. replacements for the all-terrain vehicles used by the more northerly units (Bv 206 and NASU) which will be replaced by significantly faster all-terrain vehicles allowing the tracked vehicles to keep up with the wheeled ones of the units, and on the horizon the MLU proper of the CV 9030 looms (for those looking even further, the BMP-2M/MD and MT-LBV-family are also bound to wear out eventually). Whether further 6X6 buys are bound to follow for the needs of the regional forces remain to be seen.

Finnish Land Ceptor – MBDA Aiming High in ITSUKO

After half a decade of talking fighters under the auspice of the HX-programme, much has already been said. Which meant that ironically enough, the most interesting piece of kit at the Kaivari 21 air show wasn’t anything flying, but a green Volvo truck. Meet the Finnish Land Ceptor.

The TEL of the Finnish Land Ceptor in a firing position by the sea at Kaivari 21 with standard-length CAMM missiles. Picture courtesy of MBDA / Paavo Pykäläinen

MBDA was shortlisted in the high-altitude effort of ITSUKO last year, a designation which I believe comes from Ilmatorjunnan suorituskyvyn kehittämisohjelma (literally “the development programme for the capabilities of the ground-based air defences). At the time I wrote that I felt they would have a hard time in face of the competition. However, there certainly is no lack of trying, and the company was eager to come to Helsinki to demonstrate the tricks that could set their offering apart from the competition.

The system shown at the air show was designated the Finnish Land Ceptor, and while based on the British (and to a lesser extent the Italian) Land Ceptor system, the Finnish offering is customised our particular needs by sporting a combination of:

  • Volvo FMX 8×8, a rather popular heavy-duty truck in Finland,
  • Saab Giraffe 4A, which in its navalised form won the contract for the main radar of the Pohjanmaa-class (SQ2020), and
  • CAMM/CAMM-ER family of missiles, in operational service with a number of countries both on land and afloat.

Those familiar with FDF acquisitions will spot the pattern: some of the best yet still  mature systems in their own field. This is usually a popular formula when you knock on the door to the FDF Logistics Command, so let’s go through things step by step, before we look at why the offer could be a stronger contender than I originally anticipated.

A Volvo FMX 8×8 in its natural environment, moving gravel somewhere in Europe (in this case, Minsk). Source: Wikimedia Commons / Homoatrox

The Volvo FMX series of trucks was launched just over a decade ago with an eye to heavy-duty earthmoving, a field that earlier had seen the use of a combination of different variants of the baseline FM- and FH-series of vehicles. The FMX sports generally more rugged equipment, including a serious tow point up front, a proper skid plate, as well as steering and gear box optimised for the task (people might remember the viral commercial in which Charlie the hamster drew a truck up from a Spanish quarry). In the eleven years since its introduction, around 1,000 FMX have been sold in Finland, which is no mean feat for a niche vehicle considering that the total number of newly registered trucks above 16 tons (gross weight) has been hovering between 2,000 to 3,000 vehicles annually in Finland during that time. With the vehicle being so common, it’s no surprise that the spares are relatively easy to come by, and finding a Finnish mechanic who knows the model is relatively easy compared to e.g. for the MAN HX-77 used by the British to transport their systems. It might also be worth noting that Volvo Trucks isn’t owned by the Chinese, as is the case with Volvo Cars. MBDA also notes that truck could be any model capable of carrying the 15-ton missile pallet, and that they are happy to change it out if FDF would prefer some other platform. However, FMX certainly looks like a solid choice, and unless there’s logistical reasons for something else I don’t expect them to do so.

The Giraffe 4A is an S-band radar that combine the functions of acquisition/surveillance-radars as well as fire control-radars into a single system. It builds upon Saab’s experience with the earlier Giraffe AMB and ARTHUR (MAMBA in British service) counter-artillery radar, to have a single AESA-based radar that can support the whole battery. As noted, it is the key sensor of the Finnish Navy’s upcoming corvettes, where it will be paired with the ESSM-missiles to provide air defence. The radar is also on order to the Swedish Defence Forces as part of their integrated air defence system. The basic specifications of the Giraffe 4A – the fact that it’s a GaN-based AESA system – means that it is able to track a significant number of targets effectively and also follow small and difficult to see ones, such as UAS, cruise missiles, artillery projectiles, as well as being able to handle detection and tracking of jammer strobes. And yes, since it operates in S-band and many flying stealth aircraft are optimised for the X-band, it will have an easier time detecting them at longer ranges than if it was a classic X-band radar. However, any such statement is bound to include a number of caveats and quickly degenerate into a mud fight. Will it spot stealth aircraft? Any radar does, as long as the target is close enough. Will it do so at a useful range? That depends on how stealthy your target is from that particular angle. Still, the Giraffe 4A is about as good as they come in this day and age, and while MBDA is happy to change out the radar if the FDF wants something else, I wouldn’t be surprised if it is in fact their first choice (a number of older Giraffes are also in FDF service, most notably the Giraffe 100 AAA as the LÄVA movable short-range air-surveillance system, though their relationship to the Giraffe 4A is rather distant).

The layout of the TEL has the missiles to the very rear with the flat rack missile tubes and the hook-system used to change them, two sets of jacks (front and rear), and the front unit which include both the electronics, onboard power supply, and masts. The FMX-based TEL is a standard road-legal truck according to Finnish regulations, and does not require any special permits besides the standard C-rating on the part of the driver (though you might need an ADR-certificate to drive live missiles, I’ve never had to check up that one so I honestly don’t know). Source: Own picture

The big deal here is the CAMM family of missiles, and in particular the big brother CAMM-ER. The CAMM does share a number of components with the ASRAAM air-to-air missile, though it would be wrong to see it as a ground-launched version of the latter. The missile is designed from the beginning as a dedicated ground-based air defence one, and as such MBAD is really pushing the fact that the optimisation work in the design phase has done wonders.

To begin with, the missile is soft-launched. In other words, instead of the rocket engine just firing and powering the missile into the air, a gas generator causes the missile to pop out of the VLS-tube. Or rather, it doesn’t just pop out, it flings it 20 meters up into air above the launch canister. There thrusters fire to point the missile in the right direction, and only after that does the main rocket fire. The test firings from HMS Argyll of the naval Sea Ceptor-version of the CAMM shows the principle rather well.

Now, why go through all that mess when it is easier to just light the rocket and off you go? There are a number of benefits. To begin with, the stress on the launcher is significantly lower, as there is no blast of fire and hot gases inside the small compartment of the launch tube. Not having to fireproof stuff means cheaper launcher. However, there’s also the benefit that since the missile hasn’t warmed up everything, there is no lingering heat signature from a missile launch, which makes it easier to keep your firing unit hidden. Hiding the launcher with nets and similar is also easier, since you don’t have to worry about them catching fire.

Another positive is the use of a VLS without wasting energy and time to course correct. In theory, a traditional missile will be faster on the target since it starts accelerating immediately. However, that require the launcher being pointed roughly in the right direction. For VLS systems, such as the very popular Mk 41 found aboard most western-built frigates and destroyers, the missile will actually waste a bunch of time accelerating out of the tube straight upwards, and then it has to trade energy to be able to turn toward its target on a less than optimal course. Everything in life is trade-offs and compromises, so which system is the most beneficial depends on your scenario, but the cold-launch means that by the time your rocket kicks off, the missile is already roughly pointing where it’s supposed to go. MBDA is claiming that in total this saves a whooping 30% in nominal launch weight compared to having the missile accelerate out from the tube (I would have to get a rocket scientist to check their maths before I’m ready to confirm that number), which in the case of the CAMM-family directly translates into an added usable energy which allow it to manoeuvre effectively at long-ranges or, crucially, at high altitudes. The profile of the weapons are such that the effective high-altitude performance is a priority, and MBDA describe the principle as the difference between a fence and a bubble. How big an area the fence covers and how high it goes are obviously classified data, but the official figures given is that at 45 km for the CAMM-ER and 25 km for the CAMM-sans suffix there is still usable energy for a high probability of kill, with the max ranges being further still.

A feature that definitely falls in the “Cool”-category is that the soft-launch can take place from inside a building provided that there’s a hole in the roof and the roof is less than 20 meters above the top of the launch tubes. A more serious benefit is that it allows firing positions in forested or urban terrain to be used (again, provided the location meets the the 20 meter + launcher height limit), and the ability to fire in all directions gives added flexibility to the system as well.

A Norwegian NASAMS-launcher of roughly the same standard currently in Finnish use as the ITO 12 showing the hot-launch principle of the AMRAAM-missile. Source: Norwegian Armed Forces / Martin Mellquist

For anybody wondering about the current situation, the NASAMS II-system in use by the FDF sports angled hot-launch cells, meaning that there will be a rocket firing inside a box and the missile will leave the launch cell under its own power headed towards wherever the launcher is pointed. As such, you don’t want to put up your NASAMS-launcher in a small clearing in the middle of the forest.

The basic firing battery for the Finnish Land Ceptor consists of six TELs running around with eight missiles each, a tactical operations center (TOC), and the aforementioned radar which function as the units main organic sensor. In addition there is obviously a number of supporting vehicles such as those carrying reloads and personal equipment for the battery personnel. The TOC is the brains of the unit, and functions as the command and communications node. Here targets are identified and engagement decisions made, with firing units being chosen and launches ordered. The whole system can be fed targeting data via the datalink from any number of sources as long as the location data quality is up to par. This include the organic radar of the battery, but also those of neighbouring batteries, other radars, ships, aircraft, and so forth. This can come either directly to the TEL or, preferably, through the TOC. The TELs are the aforementioned FMX trucks with the complete firing unit as a single palletized unit. They lack their own radars, but can be fitted with an optional electro-optical sensors in a mast which allows for independent passive targeting at ranges of up to approximately 20 km. As such, the TELs are able to operate independently to a certain extent, relying on the datalink and/or own sensor to get targeting data. Crucially, MBDA has already demonstrated their ability to successfully integrate TOCs and TELs with Insta’s C2-network.

The characteristic twin masts of the TEL, with the larger one housing the datalink antenna and the smaller one being the optional E/O-sensor which allow for independent targeting if the radar and datalink are down. Source: Own picture

In practice, the TELs would drive to a given firing location, where the truck would park, lower the jacks, raise the missiles and masts, and the crew would push a few ‘On’-buttons and start connecting cables. The whole thing would be ready to fire within ten minutes, but a more realistic time for a fully integrated IADS-position is in the ten to twenty minutes range. A two-person crew could handle the whole system, but to ensure 24-hour continuous operations a squad of eight is the standard. The complete missile unit is palletized, and in case a position is expected to be static for a longer time the jacks can be heightened to allow the truck to drive away, after which it is lowered to lay flat on the ground a’la NASAMS. This allows for a smaller footprint and is more easily camouflaged compared to the full vehicle. In a static position (something the British Land Ceptors will employ on the Falklands) it is also possible to start pulling power and communications cables between a fortified TOC and the firing units, though in case of a more fluid scenario where one wants to stay mobile the missile unit has its own onboard power unit in the form of a diesel generator and can take care of the communications via the datalink mast mentioned earlier. This flexibility to allow the same system to be either in full shoot-and-scoot mode or as a fortified solution (as mentioned, you could in fact fortify the launcher as well thanks to it being cold-launched) is quite something.

Reloading take a handful of minutes and the whole missile set can be changed out via a flat-rack and cargo hook system. Alternatively, individual launch tubes can be switched out with a crane. The tubes are both the storage and launch containers, meaning the munitions are next to maintenance free. Once the fire command is given, the frangible top-cover is simply torn apart by the missile heading upwards. Any single TEL can quickly change between CAMM and CAMM-ER simply by switching out the flat racks, with the CAMM-ER being identified by its longer tube. Both missiles sport a new active radar-seeker with a low-RCS capability, meaning that they are able to operate in fire-and-forget mode once they’ve left the TEL.

It’s hard to shake the feeling that MBDA is onto something here. While they decline to discuss the specific FDF requirements and projects in much detail – the official line is that that is something best left to the customer – it is rather obvious that the CAMM-ER would give the FDF the wanted high-altitude capability for a ground-based system, while the baseline CAMM would seem to fit the area coverage-requirement rather well. The modularity, mobility, and ability to integrate into current networks are also obviously a big deal. And it is hard to not notice just how well the combination of systems seem to fit the FDF’s Goldilock’s approach of proven but yet cutting edge. With the UK and Italy both having acquired the Land Ceptor-system, it certainly is far from a paper product. This is also something that MBDA like to point out, the benefit of sharing a common system with such a strategic partner as the British Army. The UK might not be first in line when Finland is discussing strategic partners in the defence sector, but it is certainly coming just behind the front-runners thanks to initiatives such as JEF. An interesting aspect is also the possibility of MBAD cooperating with Finnish industry on the Land Ceptor as part of an indirect industrial cooperation package in case some of the eurocanards would win HX (ground- and air-based air defences are obviously all part of the same attempt at increasing FDF’s overall air defence capabilities). Already now, Finnish industry has reportedly been involved in the development of the Land Ceptor proposal. MBDA is also happy to declare that it truly would be a Finnish system, with full sovereign capability and freedom of use, as well as local maintenance. “We give you the keys, and you use it”, as it was explained during our discussions.

But the competition is though, and MBDA has had a surprisingly hard time landing a large Finnish order. Part of this likely comes down to price where the shorter production runs typical of European systems compared to US ones have been an issue. This time they are up against not only the Israelis which have beaten the more traditional suppliers to FDF twice in recent acquisitions, but also Kongsberg with a developed version of the NASAMS which would bring significant synergies to the table. However, might the NASAMS-ER be too much of a case of putting all the eggs in the same basket – especially if we see an AMRAAM-equipped fighter taking home HX? When I ask him about the though competition they face, Jim Price, MBDA Vice President Europe, is confident.

We’re always in though competitions. [But] we have a unique military capability.

You can indeed come a long way with that when dealing with the FDF, and it certainly sounds like a combined force of NASAMS and Land Ceptor batteries each playing to their respective strengths could provide a well-balanced mix to support the Air Force and the FDF as a whole in their quest for air superiority. According to the latest info, we will get to know if the FDF agrees sometime during 2022.

Oh, and you really didn’t think I could write the whole post without embedding The Hamster Stunt, did you?

Higher, Faster, Independent

I have said it before, and I still stand by it: for the everyday work short of war that the Finnish Air Force does, the Eurofighter Typhoon is probably the best fighter out there. The pure performance at speed and altitude makes the aircraft extremely well-suited to air policing, QRA, and in general keeping an eye on things that needs some eye-keeping.

Now, at the same time it needs to be understood that what’s setting the bar for HX is not peacetime operations today, but how efficient the aircraft and associated systems is as part of an all-out war between 2025 and 2060. And that’s a different ballgame. BAES thinks their offer is the best at that as well, though that’s certainly a more controversial view.

The RAF Typhoon display flown by Flt Lt James Sainty, callsign ‘Anarchy 1’. Flt Lt Sainty has not only been doing QRA with the Typhoon in the Falklands, he has also gone to war in the aircraft. Source: Own picture

At the hearth of the Typhoon as a concept is the raw performance coming from the decision to maximise the classic interceptor traits of ‘high and fast’. It deserves to be repeated that not only does this mean that the aircraft can sprint – it reportedly would do the Kuopio-Rissala AFB to Helsinki QRA run in 8 minutes – but also that you don’t need to push your engines in the same way to reach a given speed as you would do with poorer trust to weight ratios and aerodynamics. This in turn gives lower wear on the engines and all other things being equal also translates into less fuel consumption. The ability to use the low power settings together with the large wing and high lift makes it possible to maintain high altitude patrols with relative ease, increasing the time for missions focused on endurance rather than range. The high sprint speed also makes it possible to maximise the kinetic energy of missiles fired, increasing both their outright range as well as their no-escape zones (NEZ). With the air-to-air focus of the Finnish Air Force, it is rather clear that these are aspects of the system that the Air Force appreciates, as is the low-drag installation of a significant number of air-to-air missiles in semi-recessed fuselage mounts. As the UK Chief of the Air Staff, Air Chief Marshal Sir Mike Wigston, commented on at an earlier media event this year, the Typhoon is his “platform of choice for QRA” (at the same event, the F-35 was described by the Brits to be very good for the purpose which they acquired it: deep strike and shipboard operations, which struck a nice balance between giving the HX competition a burn while not looking like you’ve bought something less than useful just to stay friends with the big guy).

A scale model of a Finnish Typhoon with the ECRS Mk 2 shown through the transparent panel. Source: Own picture

But war isn’t decided in a drag race, and there are lots of magic happening under the hood. The key subsystem in BAES presentations at Kaviari 21 is the ECRS Mk 2. The exact name for the big thing up front, and it really is on the larger side compared to the competition, is somewhat up to debate if you listen to BAES’s people.

Array, I have deliberately not called it a radar.

The reason is that it transcendens the roles of a traditional radar and several other subsystems. In any case, BAES does describe it as the “most advanced fighter sensor” available, and by happy coincidence is in the final stages of development being flying within a few years and operational well before the end of the decade. This means that BAES and the UK is able to offer both a securely funded and relatively mature product, the system has been in development for quite some time before the final funding decision recently came, as well as the opportunity to allow Finnish industry to take part in the final stages of development of the rad… excuse me, array. Electronic warfare is a notoriously tricky field to analyse based on open sources, but most seem to agree that the ECRS Mk 2 will be among the very top offerings in the world by 2030, potentially even being the top dog.

The DASS might not enjoy the same kind of mythical reputation as the offerings from Dassault and Saab, but it does seem to be more or less up to standard and comes with some nice features such as towed decoys and BriteCloud 55. The weapons found in the package include a nice mix of some of the world’s best-in-class ones, though as is the case with all non-US offerings the question is what is the cost and how quickly can you pick up a refill if war suddenly starts looking like it’s on the horizon. The recently announced 160 MEur P3Ec investment in the Eurofighter-program include not only upgrades to the weapons capabilities and the large-area display which is included in the standard offered to the Finnish Air Force, but also upgrades to the DASS. Associated with the LAD is the Striker II-helmet, which is “the world’s only helmet-mounted display to combine a 40⁰ field of view, daylight readable color display and integrated night vision“, so now you know that.

Seriously though, it really is supposed to be very good.

The standard Finland would be getting is aligned with the one operated by the UK, as is to be expected not only because BAES is taking lead on the project, but also because the UK Typhoons are fully swing-role in a way e.g. the German ones aren’t. This include the varied weapons arsenal – including all categories covered by Finnish requirements – but also the less-visible but key subsystems discussed above, such as the ECRS Mk 2, LAD, Striker II, and BriteCloud. And not to forget, the stuff happening around the aircraft, which in fact might end up tipping the balance in case this turn into Eurofighter’s most prestigious export deal yet.

The whole part about full sovereignty and ownership of both the aircraft, its support systems, and the data it generates is nothing new, but has been a key part of BAES sales pitch. And for good reasons. Being able to promise “full freedom of action”, not only for the FDF in usage of the aircraft and its capabilities, but also to Finnish industry working with and on it, is a rare treat. A good example is the engine maintenance infrastructure, where Finnish industry would be the lead, with EuroJet functioning as a sub-supplier to these. The mission data turn-around times are also a point BAES likes to get back to, with updates being done in country by Finnish personnel with day to day or even mission to mission optimisation ability. Or as a BAES spokesperson expressed it:

This is manoeuvrability, but in a very different sense

This isn’t any hypothetical future capability either, but a process that is in use already in combat operations over the Middle East where the aircraft gather electronic intelligence, which are then analysed and the threat files of the aircraft are being updated accordingly before the next mission.

1(F) Squadron Eurofighter Typhoon FGR4 aircraft prepare to fly out of a snow covered Keflavik AB, Iceland, on 6 December 2019. The RAF detachment in question brought four Typhoons to Iceland as part of the periodic NATO air policing mission, the less-famous cousin of the BAP. Picture courtesy of BAES, credits Cpl Cathy Sharples (RAuxAF)

For Finnish industry to support the FDF in this, the industrial participation package is heavily focused on technology transfer in key areas not only physically related to the aircraft – the production line for the EJ 200 engine being the obvious example of this – but also those related more abstractly to secure and efficient operations, such as cyber security, space technology, and sensors. BAES extremely wide portfolio and the close cooperation with other partners in the Eurofighter program allows for the inclusion of tools in such a variety of fields.

At this point, chances are someone, possibly a F-35 fan, will laugh and point finger while claiming that BAES is putting in lots of other stuff in their offer besides the fighter itself to try and win the deal through that.

Yes, you are absolutely correct. And if you paid attention, you would know that is the whole point of this procurement.

Those who have been following the program will remember that from the outset the authorities and Puranen in particular have raised the point that this isn’t a fighter competition, but they are searching for who can supply the best capability to meet the Finnish Defence Forces’ needs in this field? This is why we see GlobalEye’s, Loyal Wingmen, Growlers, and licensed production lines on offer. That’s also why HX Challenge wasn’t the deciding factor, but an all-out wargame simulating total war where the performance of the FDF with those capabilities included in the BAFO will be the deciding factor. If FDF does a better job with your package than with that of a competitor because you were able to offer a decent fighter and ensure safe sharing of the common situational picture throughout the FDF, or if your fighter did somewhat worse in the initial fighting but was able to keep up the tempo longer than the competition because you were able to bring along more bombs, congrats, the contract is yours.

That is how it’s been communicated, and that’s how it should be, because wars are never decided in a series of 1 v 1 or even 4 v 4 engagements, but over days and weeks of combat between the combined armed forces.

End of rant, back to the regular program.

BAES also likes to push the point that the system is mature overall and with known operating costs. The concept of operations in the RAF is an interesting case when it comes to this. As has been discussed on the blog earlier, what drives the affordability in the UK is a close cooperation between local industry and the air force, in this case BAES and the RAF, a system that isn’t too far off from how Millog and FDF cooperate. As it was described in an earlier presser:

[The Typhoon] is designed not to be stealthy, but to be there

The combination of a life-cycle cost that is well understood and affordable with a mature platform with high reliability is what ensures that aircraft actually get to fly, and that is certainly what the Finnish Air Force wants. However, the aircraft is bigger than some of the competitors, and the procurement price is acknowledged to be higher than some of the other platforms on offer.

And that makes it suspicious when BAES insists on talking about replacing capability and not aircraft. As I’ve argued earlier, yes, you can probably get away with 62 fighters getting at least as much airtime as the 64 Hornets would considering higher availability for modern aircraft, and being familiar with large-company-bureaucracy I can see some marketing SVP deciding that it looks bad to say that 62 aircraft are on offer when the rest talk about 64 (except Dassault, but, oh, well). However, I can also see the offer being 50, and that would mean that BAES is out of the running on the procurement budget alone.

Which would be a shame, because as I’ve described here there is quite a lot of good stuff in their offer, and a 64-strong Typhoon fleet taking on the competition in the wargame would certainly be a worthy contender.

Boeing Refusing to Let New Fighters Steal(th) the Show

The difference between success and failure for Boeing in HX is razor thin.

Granted, as there are no prizes for second spot, you can make that argument for all fighters involved, but Boeing still has something of a uniquely deceptive situation. While a favourite of many analysts – and it has to be said, on good grounds – the reliance on US Navy interest in the platform means that the step from favourite to bottom rung is a short one.

The F/A-18E Super Hornet visiting Tampere-Pirkkala AFB and Satakunta Air Wing for the first (?) time back during HX Challenge. Source: Own picture

Boeing representatives readily admit that the very public battle fought between senior US Navy leadership and politicians over the future of the Super Hornet isn’t helping their marketing. At the same time, they don’t admit to being overly worried in the grand scheme of things. The US Navy fighter shortfall is very real, and even if the service would want to phase out the Super Hornet they will struggle to do so any time soon based on the sheer number of Super Hornets in service and the lack of a viable alternative. While Rear Adm. Gregory Harris, director of the Air Warfare Directorate of the Office of the Chief of Naval Operations, might say the service “must replace the Super Hornets and the Growlers by the 2030s“, it’s a statement that fits poorly with him saying in the same interview (from April this year) that he “expects the Navy to have “a better idea” within the next two or three years as to whether it will buy a manned or unmanned fighter to follow the Super Hornets”. To put it bluntly: the F-35A declared FOC in 2017, with the concept being more or less clear when the X-32 and X-35 designs were selected as concept demonstrators in 1997. If that point in time is 2023-2024 in the case of NGAD, it would mean FOC in 2043-2044, putting the F/A-XX quite some way off from having replaced the Super Hornet before the end of the 2030’s. Even with a faster development timeline – say reaching FOC by 2035 – building a few hundred new fighters and rolling them out will likely take at least five years even on a rushed schedule. And even then, the more specialised Growler is likely to stay on call for longer. The EA-6B Prowler survived 18 years longer in US Navy service compared to the baseline A-6 Intruder, and a few years even further in the USMC. Even provided for a faster turnaround thanks to developments in electronics and unmanned systems (which frankly hasn’t happened just yet, but conceivably could be the case), the Growler staying in service for five to ten years after the retirement of the Super Hornet doesn’t feel like a stretch.

It’s probably something along these lines of reasoning that leads US politicians to question whether the Navy really can afford to run down the Super Hornet production line and just focus on the Service Life Modifications-program (though it has to be said that in some cases securing jobs in homestates does seem to be the first priority). If the Super Hornet stays in service until 2045, and the Growler until 2050, the final round of US Navy-funded Growler upgrades could then be used to feed into an export-directed Super Hornet “Block X” standard in much the same way that Block 3 rests on many technologies originally developed for the Growler.

It isn’t an implausible scenario, but it is far from certain. And if the Finnish Air Force isn’t prepared to gamble on it, the Boeing supplied BAFO can easily be headed for the metaphorical shredder.

But that’s not something that you will see Boeing worrying over, at least not officially.

They express confidence in all aspects of their bid. It’s suitable to Finnish needs, it provides efficiency, there’s a strong weapons package, it’s affordable and mature, and the industrial participation package is solid and based on their long experience of working with Finnish industry in supporting the current Hornet-fleet to ensure security of supply. Boeing also states that it provide the tools to operate independently in a high-treat environment by constituting “a complete self-sustaining package”. Keen readers will note that “self-sustaining” isn’t the same as “sovereign” promised by Dassault and BAES, but still.

A key point worth keeping in mind is that Boeing is taking the Finnish authorities on their word when they have been repeating that they aren’t buying a fighter but a package of capabilities. The Growler is the obvious example, but Boeing also took the opportunity at Kaivari 21 to release further details on how they see Manned-Unmanned Teaming (MUMT) in the future.

Let’s first make something absolutely clear: the ATS is in the BAFO, but it is an option. It’s a potential future capability with a price tag given for the systems and associated infrastructure.

As such it won’t be evaluated in the deciding wargames (at least not in the first point, it is more unclear to me how the second evaluation point played with 2030-standards would treat future growth capabilities). However, it offers some interesting capabilities, especially as the concept is that anything mission-related is put into the nosecone which is easily snapped on or off to install another one. There’s obvious benefits here as the same airframe can fly different missions, but there’s an interesting secondary benefit to a small high-tech country such as Finland as well. It is possible to with a relatively small input develop, either alone or together with other operators, new payloads tailored to Finnish needs. This is based on the fact that one doesn’t need to develop the aircraft itself (as is the case with building a new UAS) nor having to run the traditional integration verification testing done on external stores. The nosecone payloads can then either be offered on the export market (provided exports kick off) or then kept under wraps as a covert Finnish capability.

The ATS during testing in Australia. Note the size of the nose compared to the rest of the aircraft. Source: Boeing media

The payloads that first come to mind are quite naturally ISR once as well as electronic warfare. Different sensors, such as electro-optical ones, SAR, and ESM, are likely among the low-hanging fruit that relatively easily could create a significantly improved intelligence gathering capability to the benefit of both the FDF as a whole but also of the political leadership in times of both peace and war. Crucially, this would fit in well with the EA-18G Growler enhancing the same in the electromagnetic spectrum, and would do so while relying on mass and attritable platforms instead of a few (individually more capable) high-value assets. The relatively easily modified sensor payload also means that the adversary can be kept in the dark regarding what capabilities the Finnish Air Force operates.

In the electronic warfare domain, being able to push large jammers or sensors close to the enemy is an extremely valuable opportunity as well. And as has been discussed on the blog numerous times, size does matter when you discuss arrays and antennas. In essence, having a MALD with a 150 litre payload and the ability to get back in case things goes well is a significant step above just firing jammers in front of you.

Another nice feature is that the ATS can be forward deployed with a relatively limited footprint. As such, keeping the ATS spread out on smaller bases in case of heightened crisis to allow for more rapid reaction can be a viable tactic e.g. in the face of increased QRA alerts, where the ATS can be launched from a civilian field (or even a road base in times of war) and by the time the scrambled Super Hornets are about to link up with the aircraft to be intercepted the ATS can already be on location and have provided an updated situational picture. And as we all know, a better situational picture allows for off-loading flight hours from the fighter fleet. In wartime, pushing the sensors out in front of the fighter can also allow for a better situational picture without breaking stand-off distance, or e.g. for long-range AIM-260 JATM shots where the Super Hornet remains passive at distance and let the ATS which is closer to the target provide fire control and guidance via its own radar and datalink. For the Finnish Navy, which faces something of a sensor gap following the ever growing range of modern weapon systems, having a larger number of flying sensors, some of which could be flown from bases along the southern coast, certainly is an interesting proposition.

But with a fixed budget occupied by the non-option stuff in the BAFO, from where would the ATS be funded?

The obvious place is munitions and upgrades. The Super Hornet BAFO include a sizeable munitions package, but some of the stuff included is things that could be carried over from current stocks. This include bombs, but also e.g. the option to skip or limit the buys of the AIM-120C-8 now included and do a jump from the AIM-120C-7 currently in service to the AIM-260 JATM. It’s a calculated risk to go heavy on the sensors and save on the missiles during the first few years, but it wouldn’t be the first one taken by FDF. Another aspect is that the regular operational budget does include money for upgrades and yet more senors and weapons, at some point these could potentially be routed to sensors who do their own flying. The basic software and hardware as well as interfaces to allow for MUMT will be included as a part of the Super Hornet/Growler baseline by 2030 in any case.

“The timing lines up very well,” Boeing notes with regard to the ATS, and they mention German interest in MUMT for their Super Hornet/Growler-package (while pointing out that Finland is the first country offered ATS as part of a fighter competition). There’s also apparently “higher trust” in Finnish calculations compared to Swiss ones when it comes to the affordability of operating the aircraft, as well as the confidence that stems from the continuation of the trend in which the electromagnetic spectrum is continuously growing in importance (the latest data point being the studies to see whether the F-15EX or some other USAF fighter could employ the NGJ-family of jamming pods), especially in the light of continued Russian investment in the field.

An Italian F-35A from Baltic Air Policing turning over the Helsinki waterfront during the Kaivari 21 air show, an air show which saw all HX contenders flying, with the exception of the Super Hornet. Source: Own picture

At the same time, the US Navy publicly says they want to move one, and over the waters next to Kaivopuisto the F-35A is busy trying to steal(th) the show. The difference between success and failure for Boeing is HX is razor thin.