Beyond NASAMS

In the shadow of the HX-fighter competition, the state of the ground based air defences in Finland has again appeared in the headlines. The short story is that in the mid-90’s Finland acquired the Russian Buk-M1 air defence system as part of Russia paying off the Soviet balance of the clearing accounts. However, while the system certainly is competent, questions soon arose if it was wise to operate a high-tech system which the main adversary had built? Especially as knowing the exact capabilities of the radar and missile is of crucial importance when it comes to defeating radar-guided missiles.

By the mid-00’s training new conscripts on the Buk stopped, and the system was phased out (never trust a Finn who says something is retired, the last conscripts who trained on the system most likely had another ten years in the reserve, during which they were assigned to a wartime unit operating the missiles, giving a ‘real’ retirement date around 2015) and replaced by the NASAMS II.

24300933_1631140310242685_5422317108702860968_n
The launcher of the NASAMS, sporting six canister mounted AIM-120 AMRAAM missiles. Source: Maavoimat FB

The NASAMS is a controversial system in Finnish service. Not because it is bad, it is very much amongst the most modern ones available, but because it is of significantly shorter range than the Buk it replaced. Most crucially it has a ceiling of around 10,000 meters, meaning that most modern fighter aircraft can simply operate above this. This isn’t necessarily as big a drawback as it is often portrayed to be. Operating above 10,000 meters place high demands on sensors and weapons if you are to hit anything, and it means that you are easily spotted by air surveillance radars, meaning that the advantage of surprise is long gone by the time the target is overflown.

Still, this has left Finland without a long-range surface-to-air missile for the first time since the late 70’s, and talk about the need for something heavier has been going since the decision to procure NASAMS instead of Aster. The big question is what?

army2016demo-073
An Iskander TEL raising one of its missiles into firing position. Source: Vitaly Kuzmin/Wikimedia Commons

One issue which has been raised is the defence against ballistic missiles, i.e. missiles which are fired at a high angle, fly up to significant heights, and then ‘fall’ down at extreme speeds to hit a target. The Russian 9K270 Iskander-M is the embodiment of this threat, and comes equipped with either a conventional warhead (usually quoted at around 500 kg, but possibly with an option for a heavy penetrating warhead above 1,000 kg) or a nuclear one. The big improvement of the Iskander compared to the 9K79 Tochka U it replaced is the significant improvement of accuracy, which for the Iskander is quoted at a circular error probability of below 10 meters (i.e. half of the Iskanders will land within 10 meters of the intended target), meaning that it can reliably be assumed to hit individual buildings or bridges. As such, many has voiced the opinion that Finland need a system capable of shooting down ballistic missiles.

…and it is in the crossroad of these ideas that we find some of the most common misconceptions, which warrant a slight detour before looking at the latest developments.

To begin with, the ballistic missile threat is not new to Finland, nor is the associated A2/AD-problem, but these have been a part of the Soviet/Russian arsenal for decades. Even with the improved accuracy of the Iskander, it is not a war-winning weapon, as the limited number of missiles available and the rather limited damage caused by a single hit makes it impossible to take out dispersed targets. In other words, while it is possible to hit the command centre of a unit, it is not possible to wipe out the unit itself. The Iskander also needs target information before launch, meaning that it is best used against stationary targets.

Another issue often overlooked is how hard it is to shoot down a ballistic missile. Crucially, while a modern long-range air defence system can sport ranges of over 100 km against air targets (at high altitude, at lower altitude the earth’s curvature creates shadows), the corresponding ranges when trying to intercept a ballistic missile approaching at very high speed and steep angle are significantly shorter. While the exact performance is secret, some sources state that the maximum range is a few tens of kilometers, creating a significant problem with regards to how to base air defence batteries to be able to protect a certain target. The implications of this is that a single battery might have a hard time defending both the Upinniemi naval base and central Helsinki, depending on the parameters of the intercept.

20170913_astamt01_AURORA_mediadag011
A Patriot battery from the US Army deployed in Sweden during exercise Aurora 17 last autumn. Source: Astrid Amtén Skage/Forsvarsmakten

As such, it is no surprise that Finnish officers are focusing on dispersion and hardening strategic targets instead of acquiring anti-ballistic missile capabilities. This is in marked contrast to Sweden’s decision to acquire the Patriot. Here, while the decision is not yet finalised, the ability to field the PAC-3 missile (or potentially the upcoming PAAC-4/Stunner/SkyCeptor) to take down ballistic missiles has played a key role. However, the capability doesn’t come cheap, as the total price tag of approximately 1 to 1.2 billion Euro will buy three to four batteries, each with a single radar and three to four launchers. However, the amount and types of missiles acquired will also play a huge role when it comes to cost, and the preliminary request, described as being “generous in size”, lists 200 PAC-3 (for anti-ballistic missile use) and 100 PAC-2 for use against aircraft, for an additional 1.5 billion Euro. The exact kind of combat management system involved will also play a role, as it seen in the case of the 8.6 billion Euro Polish deal for a comparable number of firing units (four batteries with four launchers each, with 208 PAC-3 missiles) as the Swedish order.

All things considered, any kind of anti-ballistic missile coverage is probably outside of the scope of the Finnish Army’s wishlist, with the focus being solely on the ability to shoot down aircraft at longer and higher ranges than what the current equipment is capable of. However, even within these bounds, there are still a significant number of different options available on the market. With this in mind the Logistics Command has now issued a Request for Information to “around ten” companies. Interestingly enough, the interview with brigadier general Renko, deputy chief of the Logistics Command, says that he would like the new missile to be part of the current NASAMS systems. At the same time, he notes that this is not purely about introducing a new missile to old launchers, but that there needs to be more batteries out in the field to improve coverage.

lippujuhlan_pc3a4ivc3a4n_paraati_2014_080_panssariprikaati_nasams_taistelunjohtokeskus
This unremarkable looking little truck is the Fire Distribution Centre (FDC), the ‘brains’ of the NASAMS II. Source: MKFI/Wikimedia Commons

The obvious choice which has figured in reporting is the AMRAAM-ER. Where the basic NASAMS uses the same AMRAAM missile as found on e.g. the Finnish F/A-18 Hornets, the AMRAAM-ER marries the basic AMRAAM seeker (with improved steering code) to the engine of the ESSM (Evolved Sea Sparrow surface-to-air missile), giving a significant increase in both range and ceiling (50 and 70% respectively according to Raytheon). This means that both goals of the RFI could be met by buying more NASAMS batteries, and having both baseline and ER-versions of the AMRAAM in service. The big problem for the AIM-120 AMRAAM is that it is something of a victim of its own success. It is operated by a stunning 37 countries, meaning that no small amount of Russian research is likely going into how to defeat it. Especially if the AMRAAM will continue to be a key part of the Finnish airborne air defences as well, which is likely to be the case unless Rafale takes home the HX-competition, it might be good to ask whether all air defence eggs should be placed in the same basket?

At this point it should be remembered that one of the key points of the NASAMS is its modularity. It is unclear exactly which parts are integrated into the Finnish NASAMS systems, e.g if our ITO 05 (RBS 70 BOLIDE) are able to plug into the NASAMS’s Fire Distribution Center (FDC), something which Kongsberg claim is possible. However, if the Army really likes the current AN/MPQ-64F1 Improved Sentinel radar and associated systems, another missile could potentially be integrated into it. It is hard to see the reasoning behind this, and I am tempted to believe that the journalist misunderstood the general, who instead expressed a wish for the new system to be part of the current Finnish integrated air defences, i.e. sharing the same air picture as well as command and control structures.

ASTER
A French SAMP/T launcher being readied. Picture from Swedish exercise Aurora 17 last year. Source: Astrid Amtén Skage/Forsvarsmakten

If we assume this is what the Logistics Command means, it opens up a vast number of possibilities. One is the very same SAMP/T-system which competed (and lost) against the NASAMS ten years ago. The SAMP/T, also known as ASTER, is the closest competitor to the Patriot, and is also available both with “normal” and anti-ballistic missile missiles. As was the case last time around, both it and Patriot will probably be judged to be too expensive (although the Swedish deal is controversial at it turned out the SAMP/T offer was 150 million Euro cheaper than the Patriot one).

rafael_spyder_sam_system
The launcher of the Israeli SPYDER-MR system. Source: Pritishp333/Wikimedia Commons

However, below the high-end Patriot and SAMP/T there are still plenty to choose from. MBDA, the company behind SAMP/T, offers the CAMM-ER and ASPIDE 2000, and while information is somewhat scarce, both are likely superior when it comes to range and height compared to the baseline AMRAAM. Saab has the SRSAM BAMSE, which offer an altitude coverage of 15,000 meters, and the benefit of operating on a different wavelength, Ka-band as opposed to X-band, than the NASAMS, making it harder to jam both at the same time. Israeli company Rafael offer the SPYDER-MR featuring their Derby-missile with a range of 50 km and a ceiling of 16,000 meters. A more exotic (and highly unlikely) option is the Japanese Type 11 missile system built by Toshiba, of which very limited information is available. Still, it does look like it could potentially fit the bill, and during the last years Japan has opened up for potential arms exports. South African Denel Systems has a number of different versions of the Umkhonto, the basic IR-version of which is currently in service with the Finnish Navy. Some of the more advanced concepts might be able to compete with the baseline AMRAAM, though it is doubtful if they will have enough reach to satisfy the demands of the current RFI. Still, Denel does offer a ground-based launcher, and is probably included amongst the companies receiving the RFI.

The winner of the eventual RFQ which is to follow the current RFI is likely found amongst those mentioned above. The defence forces would like to sign a deal in 2020, and notes that this is tied to HX and Squadron 2020, as all three programs play significant roles in the overall air defence of Finland. If e.g. the CAMM in its sea-going version is adopted for SQ2020, it might increase the chances for CAMM-ER being adopted as the ground-based solution. In the meantime, it does feel like the AMRAAM-ER is the favourite, with the big question being whether relying too much on a single missile seeker for both air and ground-based is too high a risk compared to the synergies it would give?

And as it happens, Kongsberg and Patria a week ago announced that they will open a Missile Competence Centre in Tampere, specifically mentioning their work NASAMS in the press release. Funny how these things come together sometimes.

Advertisements

The quest for MTO XX

The main anti-ship weapon in the current Finnish arsenal is the MTO 85M long-range anti-ship missile. This is a version of the widespread Saab RBS15 surface-to-surface missile named RBS15 SF-III (often this designation “Third version of the RBS15 for Suomi/Finland” is mixed up with the RBS15 Mk3 designation, which denotes a newer version, more on this below).

The MTO 85M is found on both the Rauma- and Hamina-class FAC, as well as on truck-mounted batteries firing from land. Notably, Finland has not acquired the air-launched version of the missile. The MTO 85M with its 100 km range make up the outer ring of defence against enemy surface units, and is then backed up with the 130 TK turret-mounted coastal guns firing 130 mm anti-ship grenades at ranges over 30 km and short-range RO2006 (Eurospike-ER) missiles being carried by infantry squads. The short range of the latter, around 8 km maximum, is made up for by the fact that the infantry squads are extremely small and mobile, and as such can move around in the archipelago to set up ambushes at choke points or guard minefields from being swept. However, when push comes to shove, it will be the MTO 85M that will have to do much of the heavy lifting.

Isometrinen
One of the early renders of the upcoming corvette, featuring twin quadruple launchers mounted just aft of the mast. Source: Defmin.fi
With the launch of the Squadron 2020 project, one of the main issues will be what (or which) weapons it will feature for the anti-ship role. Preliminary renders have shown twin quadruple launchers mounted amidships, not unlike those used for the US Harpoon anti-ship missile. The Harpoon has, in a number of variants, been a sort of de-facto NATO standard (together with more famous Exocet), and new versions keep being rolled out. In many ways, the Harpoon, Exocet and RBS15 are comparable. All feature a radar seeker in the nose, are comparatively large, and uses an attack profile where they approach the target at high subsonic speeds at very low altitude, skimming just a few meters over the waves. All three are available in truck, ships, and air launched variants, with the Exocet and Harpoon also being found in submarine launched variants (this obviously being a largely academic talking point in the case of Finland). A new version of one of these three could very well provide the main striking power on Finland’s upcoming corvettes, and would be in line with Finland’s rather conservative view on defence acquisitions, preferring evolutionary rather than revolutionary increments.

The joker of the pack is the NSM provided by Kongsberg, and selected (in its air-launched JSM-version) to be the prime anti-shipping weapon for the F-35. The Norwegians has a reputable reference in the AGM-119 Penguin, which is a short-ranged IR-seeker missile that has seen significant export sales, crucially as a helicopter-launched weapon to the US Navy. The system was also operated by the Swedish Navy as the Rbs 12. The NSM is altogether different though, and its performance and size places it in the same category as the above-mentioned missiles, with one crucial difference: it uses a passive IIR-seeker, making it worse at handling adverse weather conditions but potentially better at coping with modern countermeasures which have heavily focused on spoofing radar seekers. It might also have an easier time in the cluttered archipelagos of the Finnish coast.

DN-SC-83-07010
A Harpoon missile blasts off from a US cruiser. Source: Wikimedia Commons/DoD
Another noteworthy “western” (with the word used in a very loose sense) missile is the Japanese XASM-3. Where most western manufacturers have preferred high-subsonic speeds, Soviet/Russian missiles have in several instances instead aimed at very high speeds, including up to Mach 3. The XASM-3, currently undergoing testing, is one of the few western projects specifically aiming for a high top-speed, with Mach 3 having been mentioned. The Japanese do have a history of successful locally-produced subsonic missiles, with the anti-shipping mission naturally being of high priority for the island nation. While this certainly brings something unique to the table, I still see it as unlikely that this Japanese ship-killer would find its way into the Baltic Sea.

For Finland, a number of pieces are bound to move around within the near future. As mentioned, the RBS15 SF-III is not the RBS15 Mk3 used by Poland, Germany, and Sweden, and will need to be replaced at some point. The system itself celebrated 35 years since the first launch this summer, and while it might sound much, by then both Harpoon and Exocet were already tried and proven systems in service. The important part is that the basic missiles of all three families have been continuously updated, and current versions share little except name and outward appearance with their brethren of the 80’s.

sisu_sk242_mto_85m_lippujuhlan_pc3a4ivc3a4_2013_3
The Finnish truck-based launcher mounting the MTO 85M. Source: Wikimedia Commons/MKFI
What happens if one fails to keep abreast with current development has been clearly shown by the attacks on USS Mason during the last weeks, where the Iranian C-802/Noor missiles apparently have scored nought for six in their attempts at targeting a modern destroyer. Important is also to recognise that while many associate anti-ship missiles with the attack on HMS Sheffield in the Falkland’s War, where the 4,800 ton destroyer was sunk by a single Exocet, history have also shown that a 150+ kg warhead isn’t necessarily enough. Four years after HMS Sheffield, the USS Stark was hit by two Exocets while sailing in the Persian Gulf, but the 4,100 ton frigate managed to stay afloat despite the damage done by the impact and ensuing fire.

For Finland, the MTO 85M is bound to receive a one-for-one replacement, and not only is it likely to be introduced on the new corvettes, but it is likely that the same missile will be implemented on the Hamina-class following their MLU and to the vehicle-mounted batteries as well. The great question is the third part of what logically would be a triad, namely an air-launched weapon. Currently the Finnish Air Force is in the situation that it feature a naval fighter, but lacks any serious anti-shipping capability. There would be a seemingly simple solution, as while the JASSM has been the flagship of the newfound Finnish air-to-ground capability, another missile has also been introduced: the AGM-154C JSOW. While the missile originally was conceived as a ‘pure’ cruise missile, the latest Block III version (C-1) is able to be used in the anti-shipping role as well. The first JSOW C-1 was test-fired from a F/A-18F Super Hornet earlier this year, and upgrading to this version could provide the Finnish Defence Forces with a diverse anti-shipping capability.

While getting anti-shipping missiles for the Hornet might not be realistic, the talk about giving HX an expanded range of capabilities compared to its predecessor gives some reason for optimism. The question then is should HX be allowed to influence the choice of new AShM?

© Dassault Aviation - V.Almansa
A Rafale M takes off with a single Exocet mounted on the centre-line pylon. Source: © Dassault Aviation – V. Almansa
For the current HX candidates, they all have their local weapons of choice. In short, the F-35 comes with JSM/NSM, Gripen with the RBS15F, Rafale with the AM.39 Exocet, Eurofighter with the Marte-ER, and the Super Hornet has a whole battery of alternatives lined up, including Harpoon, LRASM (essentially an anti-ship development based on the JASSM), JSM/NSM, and JSOW C-1. Note that for several of these, the missiles aren’t integrated yet, but in different stages between coming at some point/unfounded decision/funded/scheduled/undergoing testing.

At first glance, stating that the Navy follow the cues of the Air Force to get what they’re having might seem tempting. However, there are a number of issues with that thought. To begin with, the air- and sea-launched versions not necessarily share enough components and similarities in handling to create any measurable synergies in acquisition or training. The HX and Squadron 2020 timelines are also somewhat conflicting. The main issue is that as HX likely will get a fighter with a missile already integrated, this would create a situation where a secondary weapon system of the Air Force would determine the main striking power of the Navy. While this would equate to putting the cart in front of the horse, the alternative is that Finland would pay for the integration of the Navy’s missile of choice onto the Air Force’s fighter of choice, or that the Navy and Air Force use different weapons. This is not necessarily a bad thing, sporting different weapons makes it harder for the target to know how it should respond to a threat, but the question is if this politically will be a harder sell, regardless of whether it actually is more expensive or not.

An interesting alternative is the launchers recently sold by MBDA to Qatar. The coastal launchers are remarkable in that they can employ both the Exocet MM.40 and the lighter MARTE ER. This could be an interesting solution especially for the upcoming Finnish coastal batteries, where a hi-low missile mix could make room for more reloads while still sticking with a single launcher.  The MARTE can also be employed by the NH 90, though in the Finnish case this would probably not be cost effective. To begin with, the TTH version lack a suitable search radar, and would have to rely on outside targeting data. On today’s networked battlefield this isn’t necessarily a big deal, but the bigger issue is the fact that the Army will need every single one of their helicopters for tactical transports.

So, which missile will it be that finds its way onto our new corvettes? Harpoon is slowly on the way out for the US Navy, and while it probably will still see use for the next few decades, adopting it as a new system at this point doesn’t make much sense. The JSM with its IIR-seeker probably won’t make the cut due to its limited all-weather capability, though it could be an interesting complement as an air-launched weapon, and the apparent positive experience with Kongsberg’s NASAMS and the recent acquisition of Patria by Kongsberg might well come into play when discussing this option (especially if the F-35 bags the HX-contract). This leaves the updated RBS15 Mk3 and the Exocet MM40 Block 3. With Saab’s strong position as the current supplier of both the MTO 85M and the 9LV combat management system, they seem like the favourite. Saab has also started the marketing campaign already.

140923-N-MB306-007
A NSM being test-fired from LCS USS Coronado. Source: Wikimedia Commons/US Navy by Mass Communication Specialist 2nd Class Zachary D. Bell
But while Saab might be the favourite, MBDA should not be underestimated. The company has a wide and varied portfolio when it comes to missiles, and has the ability to offer a one-stop-shop solution for the whole missile-package for the corvettes as shown by the recent deal in which MBDA sold long-range anti-ship missiles as well as long- and short-range air-to-surface missiles to four new Qatari corvettes under a 1 billion euro deal. The deal covered Exocet MM40, Aster 30, and VL Mica missiles, which is a combination that would fit the Finnish requirements very well, and significantly boost the air defence network covering southern parts of Finland (including Helsinki). It would also supply the Finnish forces with an anti-ballistic missile capability on a platform with higher operational mobility compared to a ground-based system. Saab crucially lacks the VLS-based surface-to-air missiles, but can on the other hand bring both a state-of-the-art anti-ship missile and a modern anti-submarine torpedo developed for littoral conditions.