The annual Finnish Naval Defence Day was held a week ago, with the usual crowd of Naval officers, reservists, and stakeholders meeting up for a day of lectures and discussion on the current state of the Navy and its reserve, as well as topics of general interest to the crowd.
The Finnish Navy and the Baltic Sea
The year so far has seen the continuation of several of the programmes initiated earlier. Two Haminas are currently undergoing their MLU, with the other two awaiting their turn. The programme is largely on schedule, with the small delay in the PTO 2020 anti ship missile programme translating into a slight setback for the Hamina-upgrade. The other major new weapon system, the light torpedo, is on the other hand on schedule, with the first batch of Finnish Naval personnel currently in Sweden undergoing training. The training deal both with the particular system (or rather systems, as Finland first will lease and operate the current Torp 45 before switching to the acquired Torp 47 once they start coming of the production line), as well as general ASW tactics which is something of a new field for the Finnish Navy.

For the Gabriel, the Navy remains as tight-lipped as they were when first announcing the decision. The message that Gabriel was the overall best performer in all categories was reiterated, with a comment that the fact that it did so at a very competitive price was an important additional factor. And while no new information was given, the excitement amongst the officer corps regarding the new system was palpable every time one brought up the topic.
Squadron 2020 is moving on slowly but steadily, with the contract date with the yard being planned for January/February 2019. This has dragged on a bit, due to the demanding situation of there being only one supplier. As this means there are no pressure on price and risk-taking from the competition, the negotiations have proved trickier than expected, but the Navy is confident that a good contract will be signed. For the combat management system the situation is more traditional with three suppliers shortlisted, and here the tender has been delayed a bit to be in lockstep with the shipbuilding negotiations. On the whole the project is moving along more or less as expected, the delays in signing the shipbuilding deal aside.

Past Squadron 2020 and the Hamina MLU further modernisation programs awaits. The 130 TK fixed coastal artillery will have to be replaced during the second half of the 20’s, and as some batches of the manportable short-range coastal defence missiles (Eurospike ER / RO2006) will start to reach the end of their shelf-life in the same timespan the Navy is taking a look at the larger picture when it comes to coastal defence and what possibilities there currently are on the market to replace the outgoing guns and missiles.
Another topic is new vessels, where the logistics of supporting troops in the archipelago holds its own challenges. One topic is how these smaller auxiliaries should be acquired, as the tendering process naturally differs from how corvettes and fast attack crafts are planned and bought. And speaking of buying fast attack crafts, on the horizon the first studies for the eventual Hamina-replacement are starting to take place.

But it is not only Finland that is actively modernising and practicing. The Russian Baltic Fleet is receiving new equipment, and the Baltic Sea is also home to many temporary high-end visitors when newbuilds are performing sea trials here. Amongst the systems mentioned by name we had the Steregushchiy-class corvettes and Project 636 “Kilo II”-class submarines, as well as the 3M-54 and 3M-14 Kalibr (which are the anti ship- and land-attack versions of the same missile) and the Redut-family of surface-to-air missiles. The Kalibr-family it was noted is in fact an issue for the whole of the Finnish Defence Forces and not the Navy alone, considering the fact that the range from Kaliningrad and the Barents Sea puts large parts of southern and northern Finland respectively inside the strike range of the ship- and sub-launched cruise missiles.
On the other hand 2018 has been largely uneventful in the Baltic Sea when it comes to major incidents, and while Russian activity remain at a high level, Northern Coasts 18 as an example took place without anything out of the ordinary. While the increased level of readiness has been taxing on the Finnish Navy, they are proud of their work in not letting any vessel move in waters “close to us” without being identified (no word on how far out the “close” reaches). To ensure this the Navy is employing a range of measures, including not only own vessels and sensors, but also cooperation with the Border Guards and the NH90 helicopters of the Army Aviation.
Unmanned technology underutilised?
Unmanned and autonomous systems was the main topic of discussion, with a particular focus on the utilisation of these technologies in the maritime domain. The rapid minituarisation and commercialisation throughout the field means that even smaller countries such as Finland are able to start investing in unmanned technology on a broader scale. It is also notable that this will not, or at least should not, simply lead to pulling people out of today’s systems and replacing them with computers. Rather a completely new set of options open up, with the ability to have platforms measured in centimeters and decimeters instead of tens of meters. Additionally endurance isn’t necessarily a limiting factor anymore, especially for surface and subsurface platforms which can wait and float freely for prolonged periods of time. On the other hand, even with improved machine learning and autonomy amongst machines, robots are still extremely good at handling a specific task or scenario but significantly poorer at reacting to surprises. As such we are increasingly entering an age where the human player is needed not for the expected tasks, but as the flexible element to take control when the unexpected happens.

While drones currently are sub-systems rather than main systems, their revolutionary nature shouldn’t be underestimated. In the naval domain, getting a lightweight synthetic aperture radar up in the sky aboard a lightweight drone is suddenly a serious alternative to the traditional mast-mounted surface search radar, providing both over-the-horizon range and having the added benefit of letting the host vessel’s sensors remain silent. An interesting example is Israel who has retired manned maritime patrol aircraft and completely replaced them with remotely piloted ones.
On the other end of the scale we have commercial off-the-shelf systems which has seen use in both Ukraine and Syria both to provide targeting data, perform reconnaissance, and for direct attacks with grenades or fixed warheads (the later use starting to blur the border between UAS/UAV and cruise missile). In the Ukrainian case, the targeted attacks against ammunition depots have shown that simple and cheap system can take on operational/strategic roles (Yes, this is something that the Finnish Defence Forces have recognised in their current operational planning. No, you won’t get further details).
But while everyone recognises that unmanned systems are here to stay and will only increase in both numbers and importance, in many ways the final breakthrough has not necessarily taken place. Comparisons were made to the state of aircraft at the outbreak of the First World War, where no-one really knew what worked and what didn’t, but after a few years of fighting the air war had reached a form which it would keep for decades. Similarly, at the outbreak of the Second World War much of the technology that would transform the battlefield between 1939 and 1945 was already available, but only the outbreak of the war led to inventions such as the jet engine being rushed into service. Currently a number of unmanned technology demonstrators are making rather slow progress in getting into widespread use, partly because lack of funding, and partly because of questions regarding artificial intelligence and the authorisation of use of force. If a significant peer-vs-peer conflict would take place, it is likely that a rapid roll-out of these existing cutting-edge technologies into operational systems would take place.
But as we consider the moral implications of ‘killer robots’, are we just overlooking the developments that has already taken place? What is the principal difference between an autonomous armed UAV, and modern impulse mines? These have sensors and a certain level of logic allowing them to discern between targets, and once deployed they will fully autonomously perform their mission, no surrenders accepted. Did we actually deploy armed killer robots over a decade ago, without ever noticing?