Flotilla 2020 – A Strategic Acquistion

The Finnish corvette program is steadily moving forward, and it is nice to see that the Navy is also becoming more open regarding the project. A while back the Navy published a 20-page long document which in quite some detail went through the background of the project, and how it ended up with four multipurpose corvettes being the vessels of choice for Flotilla 2020. This was followed up by a four page article by captain (N) Valkamo, the Navy’s Assistant Chief of Staff / Plans, published in the personnel magazine Rannikon puolustaja (fi. Defender of the Coast). The latter provide a good overlook over the project, including the background research and some further nuggets of information compared to the longer text.

While the program seems to enjoy broad support amongst the Navy (unsurprising) and politicians, it continues to be something of a hot topic amongst parts of the general population and other service branches. With this in mind, it comes as no surprise that both texts place a heavy focus on the solid groundwork made before the decision to focus on four multipurpose corvettes was made.

First, the nature of the future naval battlefield was predicted, and yes, that include the presence of K-300 Bastion anti-ship missile system. After this, the question of how to cost-effectively solve the missions of the Finnish Navy in this threat environment was looked into, including a number of different configurations with vessels of different sizes and roles and in different combinations. Unsurprisingly, it was concluded that due to operational and tactical flexibility as well as economic factors (including both acquisition and life-cycle costs) a single class of multipurpose vessels was preferable over numerous different designs specialising in one or two roles and operating together. I’ve earlier discussed the issue of trying to coordinate different ships into a working unit, ensuring that the right one is always in the right place. A metaphor could be the merger of light, medium, heavy, infantry, and cavalry tanks as well as the tank destroyer into the jack-of-all-trades Main Battle Tank. Other alternatives that were looked into was transferring whole or part of the missions to air- or ground-based systems, but this was also deemed impossible to implement cost-effectively. Especially as e.g. mining require vessels out at sea in any case.

Screenshot 2017-03-21 at 19.52.23
An infographic depicting the timeline for all major surface units, including scheduled service date, MLU, decommisiong, as well as roles and capabilities. Source: Finnish MoD

This then caused the slight growth in size compared to the current mine ships, as the vessel needs to be able to fit numerous weapons and their sensors, as well as maintaining the crew complement and provisions needed for prolonged stays out at sea during escort or surveillance missions. Something which hasn’t been widely discussed is the need for speed. While the light fast attack crafts have impressive sprint speed, their ability to transit a high speeds over longer distances isn’t stellar, especially if you encounter adverse weather. In the same way, while a Ferrari might be faster than a Land Rover on the Nürburgring, the roles would quickly be reversed if they set off on a bumpy dirt road through the Finnish forests. The larger size does also allow for the ability to operate in ice, as well as better resistance to combat damage due to compartmentalisation.

Still, the size won’t grow too much. Partly because larger vessels aren’t an end in itself, and partly because both acquisition and life-cycle costs grow with the hull size. The Navy also face an issue with having a limited number of crew members with which to man the vessels. All of these factor in, and has lead to the current design. Importantly, keeping the total length around 100 meters and the draft low means that the vessels can use the current naval infrastructure in the Finnish archipelago, including the current network of secondary bases and the extensive network of inshore waterways.

Screenshot 2017-03-21 at 19.53.11
The 7 meter long and 900 kg heavy 1:15 scale hull model is pushed through the ice as part of the test program. Source: Finnish MoD

The hull form has been finalised, and scale test have been performed with an eye on different requirements. These include both resistance, manoeuvring, and ice-going capability. In addition, the new propeller design has been tested in full scale on the Navy’s auxilliary FNS Louhi. As was expected, the vessels will have a drop of MEKO-blood in them, as the concept has been fine-tuned by German design bureau MTG-Marinetechnik GmbH.

FNS Hämeenmaa (02) showing the 57 mm Bofors Mk I. Source: Puolustusvoimat

For the weapons and sensors, the RFI resulted in a number of suitable packages being identified, all fitting within the budget. One of these will then be chosen, with the (foreign) main supplier being responsible for providing an integrated warfighting capability (sensors, weapons, C3I, battlefield management, and so forth). One interesting change which I did not expect was the renaming of the anti-ship missiles from meritorjuntaohjus (sea-defence missile) to pintatorjuntaohjus (surface-defence missile), with the Navy’s new missile being slated to become PTO2020. It is possible that this change reflects the secondary land-attack capability many modern missiles have. The PTO2020 program is handled as its own program as it is destined for both the updated Hamina, the corvettes, and the land-based launchers. As such it is not included in the 1.2 billion Euro price tag of the corvettes, as is the case with the new light ASW-torpedo which will be acquired as part of the Hamina MLU.

In addition to these systems, several systems will also be transferred from the Rauma- and Hämeenmaa-classes, as well as from the already decommissioned Pohjanmaa. These include the deck guns, towed arrays, decoy launchers, mine-laying equipment, and fire control director. The deck gun is an interesting issue, as the Rauma is equipped with the Bofors 40 mm, of which there are four, while the Hämeenmaa feature the 57 mm Bofors Mk I, a considerably more suitable weapon for a corvette. Still, the Mk I is quite a bit older than the corresponding 57 mm Bofors Mk 3 which is found on the Hamina, and as we all know there are only two Hämeenmaa vessels in service. However, it is possible that there are more guns in storage, as the two scrapped Helsinki-class vessels as well as the Pohjanmaa also had a single 57 mm Bofors Mk I each, and the Finnish Defence Forces is famous for not throwing away something that might prove useful further down the line. As a matter of fact, I wouldn’t be surprised if the current guns mounted on the Hämeenmaa-class are these recycled Helsinki-class guns… In any case, I expect to see the 57 mm Bofors L/70 mounted on the corvettes, and probably upgrade to a Mk 3-ish standard in order to be able to fire smart ammunition remotely.

The decoy launcher is more straightforward, as both classes feature the modern Rheinmetall MASS. The towed arrays currently in service are the active Kongsberg ST2400 variable-depth sonar and the SONAC PTA passive sonar. Very little information is available on the latter, but it is understood to be a rather conventional system well suited for littoral operations with both narrow- and broadband waterfall displays. As the current number of arrays has been quite small, and as the Hamina will also take up the ASW-role as part of their MLU, it is entirely possible that more arrays will be acquired. It is also unclear if all corvettes will get both active and passive arrays, or whether they will be limited to either mode of operation.

The scale model shown by Saab at Euronaval 2016, featuring a Giraffe 4A and a 1X above it in the cut-outs. This combination of shrouded rotating radars (the cut-outs are for illustrative purposes only) gives both long-range search capability and short-range tracking of rapidly closing targets. Photo: Saab, used with permission

Interestingly, the fire-control sensor is the Saab CEROS 200 radar and optronic tracking fire control director. This will likely strengthen Saab’s already strong offering, as they already have a tried solution for integrating the CEROS into their 9LV combat managment system, together with their RBS15 MK3 missile and Sea Giraffe radars. The 9LV is already a familiar product to the Finnish Navy, and it would come as no surprise if Saab would be the prime contractor for systems integration. Other companies likely in the running include Atlas Elektroniks (prime contractor for the ongoing Pansio-class MLU), Kongsberg (best known for the NSM anti-ship missile, but has a wide portfolio of naval products), and Raytheon (sporting strong references).

Meripuolustuspäivä 2016 – Maritime Defense Day

Once a year the Finnish Navy and Naval Reserve together arrange an invitation only seminar under the name of Meripuolustuspäivä (Maritime defense day). The purpose is to keep up to date with current trends in the field, as well as to enhance contacts and information sharing between the active-duty and reservist members of the Finnish naval community. This year’s edition was held at the Naval Academy in Suomenlinna outside of Helsinki, and was attended by approximately 100 persons, stretching from flag rank officers (active and retired) to cadets, with the civilians coming from the Naval Reserve, marine and defense industry, and other stakeholders. The information in this post comes from both presentations and informal discussions.

Robin Elfving, chairman of the Naval Reserve, during his presentation dealing with the current state and future of the organisation. Source: own picture

The Navy is certainly going places, and while the continued development of Squadron 2020 naturally grabs much of the spotlight, a number of other developments are taking place in the background. The Hamina-class is set to undergo their MLU in the 2018-2021 timespan, and it will mean a significant upgrade in capability for the vessels. Key amongst the changes are the introduction of ASW-capability. This is to mitigate the shortfall in ASW-capable hulls that will take place with the withdrawal of the older Rauma-class. The MTO 85M will also be replaced as discussed in an earlier post, with the new missile being installed on both the Hamina and the corvettes, as well as replacing the truck batteries before 2025. The plan seems to be that the updated Hamina will be the ‘little sister’ of the corvettes, sporting some of the same weapons and capabilities, which will allow for better interoperability between them. The introduction of a proper ASW capability in particular is most welcome, as sub-hunting is a field where search ranges are very limited, making the number of hulls available a key factor. The Navy will now also be able to work up proficiency on new capabilities on the first modified Haminas while waiting for the first corvette to reach operational capacity. In the meantime, further procurements have been made for a number of weapon systems destined to stay in service, and part of the Jurmo-fleet is also destined for a MLU in the near-future.

The last Katanpää-class mine-hunter is set to be handed over by the yard in Italy on the 1 November. The vessel, like its sisters already in Finland, will receive some minor changes to bring it up to standard. On the whole, the Navy is very happy with the class, with representatives noting that the delays and issues during the build phase largely have been related to the handling of the project, and not the vessels themselves.

Squadron 2020 is on track, and enjoys broad political support. Notably the final acquisition decision is not yet taken, as the project is still in the concept phase with the Navy going through the responses received for the RFI. The renders released are described as “artists impressions”, something which Saab’s representative was happy to latch on to and explain that instead of the fixed radarpanels on the latest renders a stealthy radar installation can be created by putting a spinning radar inside the mast. I can see that this is a less expensive solution, but tracking of fast-moving targets such as missiles will naturally suffer. I guess we’ll have to wait and see…

The scale model shown by Saab at Euronaval 2016, featuring a Giraffe 4A and a 1X above it in the cut-outs. This combination of shrouded rotating radars (the cut-outs are for illustrative purposes only) gives both long-range search capability and short-range tracking of rapidly closing targets. Photo: Saab, used with permission

The increased tensions around the Baltic are visible in the everyday work of the Navy. Not only is the Russian Baltic Fleet more active, but also the increased number of vessels being built for export by Russian yards bring traffic to the Gulf of Finland as they undertake sea trials here. The Finnish Defence Forces identify every single vessel moving on the northern Baltic Sea and in the Gulf of Finland, employing whatever method is the most suitable for each individual situation. The Navy is also further increasing its emphasis on readiness, not only as a technical requirement, but also as a state of mind for all personnel involved. This include not only active duty soldiers and seamen, but also conscripts which are now allowed to take part in such readiness operations for which they have received proper training. The Navy of today is first and foremost a readiness organisation.

For the Navy, international cooperation is a must. “We lack the capability to do certain things”, as one officer put it, and this hole is plugged through international cooperation, with Sweden as our single most important partner. The most important initiative is the joint Finnish-Swedish Naval Task Group, which is consistently improved and also the framework under which Finnish and Swedish units participate together in larger multinational exercises.

For the Naval Reserve, it continues its work as a link between the Navy and its reservists, as well as the common denominator for naval reservists throughout the country (including reservists from the coast guard). While the brand amongst active reservists is strong and holds a certain sense of pride, the organisation has now also been making a conscious push to heighten awareness of the naval reserve and its activities outside of currently active reservists, which has included a new website and increased presence in social media. To further enhance discussions in social media, the Naval Reserve also launched its Twitter-guide, including tips on how to take part in the defense and national security debate on said forum. At the same time, equipment-wise the training capabilities have been increased with introduction of more L-class vessels and new canoes for the training of coastal jaegers.

The theme of the panel was Hybrid Warfare, a topic which is as current as it is unclear. Defining what exactly constitutes hybrid war was a challenge in itself, with one definition being the employment of whatever methods work best, regardless of whether they are in line with traditions or any kind of legal/chivalric code. Another definition put forward focused on the use of unconventional methods by conventional actors (i.e. armies or other organised units) OR the use of conventional methods and weapons by irregular actors. A prime example of the first one is the Russian assault on Crimea and further operations in Eastern Ukraine, while the recent attack on Swift by Yemeni rebels (with or without the help of foreign ‘advisers’) using a modern complex weapon system such as a sea-skimming missile is an example of the later. It was also noted that hybrid warfare is a relatively new term in western discussions, and only after its widespread adoption here has Russian sources started using it, and then only as a description of how the west analyses Russia’s operations.

The threat of the unexpected is hard to guard against. Like a cartoon figure not noticing the saw cutting through the floor surrounding you, hybrid warfare works best when the target doesn’t notice that it’s foundation is being weakened. This can be achieved e.g. through the use of knowingly breaking international agreements or codes, such as falsely declaring emergencies to gain access to ports.

The term information warfare was also debated, as the use of (dis)information is a crucial part of any hybrid operation. However, as war usually involves more than one part, if someone is waging an information war against Finland, wouldn’t that mean that we are also conducting a war by defending us? Can we say that Finland is engaged in defensive information warfare? Our current defense largely consists of meeting false accusations and oversimplifications with correct information and facts, but is this also an information operation that qualifies as a kind of warfare?

The panel assembled. Source: own picture

For the information part, it is clear that an orchestrated campaign aimed at tarnishing Finland’s reputation is being waged by Russia. The goal here might be to isolate our country internationally, with a good example of what can happen when your reputation is low being Ukraine’s reputation as suffering from a high rate of corruption, which in turn lessens the willingness of the international community to come to its aid. Another point was made regarding Hungary, with the rhetorical question ‘Who would want to come to their aid if a crises occurred?” being asked. This is reminiscent of smear campaigns being directed against individuals, which e.g. can focus on addressing (often false) discrediting information to their employers or partners, with the aim of silencing or isolating a person.

This then transits over into the fact that the concept of nationalism is seemingly changing. With the increased polarisation and diversification of the Finnish society, the big question is how will “Finnish” be defined in the future? If the only thing defining it is a passport, that will inevitably threaten the unity of our society. With the younger generation seemingly less open to traditional Finlandisation, this seems like a likely target for hostile propaganda.

…and speaking of propaganda: what is really the PR-value of the Admiral Kuznetsov task force slowly heading south under a cloud of black smoke? Because one thing is sure, and that is that the military value the air wing can offer for the Syrian regime forces is limited at best.

Further Developments of Squadron 2020

The Finnish Navy has released further details on the upcoming corvettes. To begin with, RMC of Rauma has signed a letter of intent with the Finnish Defence Forces for the construction of the vessels. This has been expected, as of the three shipyards in the country capable of producing ships of this size, Artech Helsinki is Russian-owned and Meyer Turku has filled their production capacity for the foreseeable future. RMC has also teamed up with Patria to ensure that the newly-founded company has the economic and logistical muscle behind them to manage a project of this size. This might be crucial, as if RMC would fail the reviews currently being undertaken, there exists a very real risk that the vessels will have to be built abroad. A special arrangement is that the Finnish Defence Forces remains responsible for the design work, with the yard handling only the building process. This is to make possible the fast delivery schedule.

An interesting article in this year’s edition of Finnish Defence Force’s Insinööriupseri, a publication published yearly by the Engineer Officers’ Association (engineer as in “practitioner of engineering”, not sappers/pioneers). This includes not only articles on the subject, but also new renders and pictures from the research program.

One of the new renders, showing the refined corvette concept. Source: Finnish Defence Forces / Insinööriupseeriliitto

Unlike the earlier renders, the concept is shown only from the sea level, meaning that several of the details that could be made out from the earlier bird’s eye views are not visible. Still, a number of important changes can be made out.

The most obvious one is that the single-panel rotating radar of the earlier renders have been replaced by a multi-panel fixed installation on a large mast of a truncated pyramid shape. This would mark a significant step up in detection capability and response time, as well as offering better stealth characteristics. Notably, the TRS-4D, successor to the TRS-3D currently found on the Hamina- and Hämeenmaa-classes, is available in both configurations.

76 mm OTO Melara Super Rapid of the Norwegian Nansen-class frigates. A possible future Finnish deck gun? Source: Wikimedia Commons/Ketil

The only weapon system visible is the fore-mounted gun, which is reminiscent of the BAE 5” (127 mm) Mk 45 Mod 4 turret. If so, this would be the smallest class to be equipped with this weapon, and while not impossible, more likely the turret in the picture is just a generic placeholder, with a 3” (76 mm) weapon being the likely choice.

All four sisters moving in column in their home waters. Source: Finnish Defence Forces / Insinööriupseeriliitto

The general design has also received a more pronounced twin mast setup, with the front mast holding the four-panel radar and sporting what seems to be an ESM-antenna on top. The rear masts holds an additional array of different antennas, and probably shrouds the funnel to reduce the IR-signature. This is a setup suspiciously similar to that employed by TKMS in recent MEKO-designs, including on the upcoming German F125-frigates and the (failed) MEKO-D bid to Australia. This is not to say that TKMS necessarily is involved in the design, the basic principle of splitting up prioritised systems for greater redundancy by physically separating them is common sense and not uniquely German. However, TKMS would be a logical partner for the “international cooperation and technology sharing [that] has occupied an important role in the project”, and the truncated front mast does bear a strong resemblance of the designs used for an early F125 draft and the aforementioned Australian concept. For the F125 concept, note not only the truncated pyramid form, but also the ESM-antenna on top of it, and wire antennas stretching from the front to the rear mast.

It is also mentioned that the US Navy has been the single most important partner up to this point, and that this is a natural continuation of a collaboration that has been taking place for close to ten years already.

Propeller testing for Squadron 2020 showing cavitation on the propeller tips. Source: Finnish Defence Force / Insinööriupseeriliitto

The hull shape seems more or less finished, with tank testing having been performed in 1:15 scale, both as towed and self-propelled model. The propulsion will be of a traditional kind, with two shaft lines sporting a single propeller each. The propellers are a minor project on their own, and are set to be of a highly advanced design. This is due to the somewhat conflicting demands of high top-speed, small diameter (due to overall draught requirement),  and low noise (and high cavitation margin). All this, while at the same time being strong enough to cope with ice. This creates significant metallurgic and hydrodynamic challenges, but high-level propeller design is also an area of expertise found both in Finland and amongst our close friends abroad (including Sweden). Suffice to say, this isn’t on my top-five lists of things to be worried about in the program.

Also check out there earlier posts on the programme, including my discussion on the use of vertical-launch systems (VLS) for some serious surface-to-air capability and the general need for corvettes.

The Attack on Swift

During the night of 1 October, the UAE operated vessel Swift was attacked outside the Yemeni coast. News of the attack quickly spread on social media, and the first indication was that the vessel had been attacked by an anti-ship missile launched from land, which struck the ship and caused a fire, with some reporting the vessel to have sunk.

The official reports downplayed the incident, referring to it as an “accident“, and claiming that the attack on a civilian MEDEVAC ship caused no casualties. Later this was reclassified as a terrorist attack, but that the naval and air units operating in the area had chased away the terrorists boats without own losses.

The vessel in question was the 98 m long wave-piercing catamaran Swift, built by Incat Tasmania in 2003. Together with a number of other vessels, she was built as a proof of concept for the US Joint High Speed Vessel-program, which eventually became the Spearhead-class. The vessel is based on the yard’s civilian fast ferries, and built to civilian standards. This is important to remember when assessing the damage done, as the damage control requirements differ between civilian and military vessels, especially with regards to external sources such as battle damage. The Swift was owned by Sealift Inc. and chartered to the US Military Sealift Command for a number of years with the pennant HSV-2 (High-speed vessel). After this the vessel spent some time back at the yard, presumably for a refit, before heading to UAE where the National Marine Dredging Company leased the vessel.

The vessel has since been a frequent visitor to Yemeni waters, where she has been making round trips between the Ethiopian port Assab and the Yemeni ports of Aden and Al-Mukalla, the later which have been a key battleground during the ongoing war. The exact nature of the operation is uncertain, as is the question whether or not she is operated as a naval vessel or simply chartered as a civilian transport. It is however crucial to note that regardless of whether the crew is consisting of civilian or naval sailors, the vessel is in essence a grey-painted fast ferry. According to coalition press releases, she has operated in the humanitarian role, bringing food and supplies to Yemen and evacuating wounded and sick people on the return trip. This is to the best of my knowledge neither confirmed nor disproved by independent observers.

Apparently the rebel forces/Houthis/Ansar Allah have kept their eyes on the vessel for quite some time, as evident by the opening shot of the Swift in daylight and the close shot of the missile striking the Swift. After nightfall they then tracked it by radar after nightfall, until firing what seems to have been a single C-802 anti-ship missile. The C-802 is a Chinese radar-seeking missile, the first of which where developed with some help from France in the mid-80’s. Production has since switched away from foreign components, including the original French TRI-60 engine (the same one used by e.g. Saab’s RBS-15/MTO-85), and to Chinese equivalents. The missile is roughly corresponding to the Exocet when it comes to behaviour, size, and performance. Crucially, the Iranians have developed their own version called the Noor.

A Noor being fired from a truck mounted launcher during an Iranian exercise. Note the search radar. Source: Wikimedia Commons/Mohammad Sadegh Heydari

The Noor has seen action in the Middle East earlier as well, most famously during the Second Lebanon War in 2006, when two or three missiles where fired at Israeli vessels outside of Beirut. The target was the corvette/light frigate INS Hanit, which was hit by a single missile. The other missile sank the small Egyptian/Kampuchean freighter MV Moonlight, while a third missile apparently exploded upon or shortly after launch. It seems highly likely that the missiles where operated by Iranian forces, and not Hezbollah themselves. The attack gives valuable clues to how the attack on Swift was conducted. The following is based largely on Commander Ville Vänskä’s Merisota and Christopher Carlson’s Attack on INS Hanit.

Sa’ar 5-class vessel. Note the white ‘R2-D2’ dome in front of the bridge, housing the CIWS. Source: Wikimedia Commons/Israeli Navy Spokesperson

At the time of the attack, INS Hanit was stationed approximately 10 nautical miles of the Lebanese coast (~18.5 km), and her movements had been followed for quite some time by the Iranian/Hezbollah forces operating the missiles. The INS Hanit is equipped with an automatic CIWS system, but due to unconfirmed reasons it did not intercept the missile. One reason is that the missile struck straight from the rear, another that it seems that Israeli intelligence was not aware of the fact that the enemy had anti-ship missiles in the area. It also seems that the system was not operating in automatic mode, due to the INS Hanit conducting air operations at the time of the attack. In fact, it seems like the spotters had observed the vessel for a long time, and waited for air operations to take place before launching. The missiles received targeting data from an commercial off-the-shelf navigational radar mounted on the truck functioning as the TEL, as such not alerting the electronic warfare personnel on the INS Hanit to its sinister nature. The missiles where then launched in sequence, apparently with different flight profiles and seeker settings to maximise the probability of scoring a hit. It seems the missile that hit actually hit a robust steel crane situated on the flight deck behind the superstructure (not mounted in the picture above), which saved the vessel from far worse damage that would have been the case if the missile had been able to penetrate the aluminium hull or superstructure and detonat its 165 kg warhead inside. In the end, INS Hanit came away relatively lightly, suffering moderate damage but still being able to continue under own power and return to service in only 10-20 days after the attack. Four Israelis died as a result of the attack. The missile that hit was the second of the salvo, with the first said to have overflown the INS Hanit before locking onto the unfortunate MV Moonlight, which sank within minutes of being hit, but luckily without any loss of life.

The attack against Swift is likely to have followed the same pattern, with the spotters tracking it visually and with the help of a standard navigational radar. It seems that it was more or less ambushed near the straits of Bab el-Mandab, where the southern Red Sea is at its narrowest. As the vessel lacked any kind of self-defense systems, and most likely any specialised electronic countermeasures or early warning systems, detecting the missile visually in darkness must have been virtually impossible. Most likely the first indication that something was wrong was when the missile impacted in the starboard side of the bow.

The detonation caused a fire, which rapidly engulfed the bridge. Unlike in the case of the INS Hanit, the vessel was put out of action, and despite the preliminary report of no fatalities, it seems likely that the missile and fire would have caused considerable loss of life, especially if the vessel was serving in a MEDEVAC-role. It is a testimony to the seamanship of the crew that they were able to extinguish the fire and save the ship. However, this is also an indication that the warhead of a modern anti-ship missile isn’t necessarily large enough to sink even a moderately sized vessel. As noted earlier, the vessel is aluminium built to civilian specifications, and as such fires are notoriously difficult to put out. That the fire is a greater danger the warhead themselves is also evident in the case of the HMS Sheffield (D80), probably the most famous instance of a warship being hit by an anti-ship missile. The HMS Sheffield was sunk after a single Exocet hit it during the Falkland’s War, and while it seems the warhead failed to detonate, the engine caused a fire that eventually sank the ship. Modern warships are often built of aluminium due to the weight savings it brings, but in case of fire this causes additional problems compared to steel. Of note is that the Royal Navy as a rule require aluminium used to be in annealed condition (O-temper), giving it lower strength but the highest ductility possible, giving  a better ability to withstand battle damage compared to the more usual higher strengths grades used in the civilian sector.

The long-term effect of the attack remains to be seen, but as said, it seems that unlike in the case of the INS Hanit, only a single missile was fired. Quite possibly there are two missiles left on the TEL, and a battle-proven crew waiting for the opportunity to strike again.

Funding Nemo

The Coastal Jaeger Battlegroup need the Navy Nemo.

That’s the short version of the story. Acquiring the Patria Navy Nemo advanced mortar system mounted on a small vessel that can keep up with the other crafts used by the Coastal Jaeger Battlegroup is exactly the kind of force multiplier that is needed if today’s slimmed version of the Finnish Defence Forces is to be able to not only survive but also to conduct offensive operations on the modern battlefield.

A prototype Patria Nemo mounted on the earlier U600/Jurmo/Watercat M12-class. Source: Patria
As I touched upon in my post on the Åland islands, the archipelago is a battlefield unlike any other. There is no single frontline, and anyone attempting to control all islands will soon find themselves overextended to the point where they are unable to defend against a determined attacker. Instead, the defender has to concentrate their forces on strategically important islands, from where they can then extend zones of control over the lesser ones. This creates a situation of islands becoming isolated strongholds, with periods of calm being interrupted only by raiding or outright assaults. The fighting is usually swift and brutal, taking place at extremely close ranges, and with a very limited ability to either reinforce or resupply the forces involved, or to evacuate wounded for that matter. Any retreat will usually have to take place over open water under fire, further increasing the determination to stay in the fight for both sides. To only solution for the attacker is therefore to rely on surprise to create local man- and firepower superiority on a single island, throwing the defender literally into the sea. Naturally, on a grander scale this calls for a very delicate balance between overextending and leaving gaps in the defence, with the Hanko campaign of 1941 probably being the best historical case study to shine light on the dilemmas. Here, the Finns continuously stretched their defences too thin, and despite the Soviets strategically being on the defensive, they managed to score a number of operational victories by being active, keeping the initiative, and playing on the strengths of the attacker.

Pioneers at Porsö, Hanko, during the first days of war in 1941. Source: SA-kuva
In the end, it was the German Army Group North and the fall of Estonia that sealed the fate of Krasnyi Gangut, the Soviet naval base in Hanko. After it became clear that the continued value of occupying the peninsula was limited, the Soviet withdrew the forces to Leningrad to shore up their defences there.

Many things have changed since the summer of 1941, but the basic premises remain the same. The Finnish Operational Forces, the spearhead of the defense forces and the units tasked with fighting the decisive battles, include a Coastal Jaeger Battlegroup, heir to the former wartime Coastal Jaeger Battalion (RANNJP). This is the sole unit in the Finnish wartime TOE which has offensive operations in the archipelago as its main task.

The Finnish Coastal Jaeger is a light infantryman. This is natural, as the archipelago rarely sees anything heavier than what can be carried on the back of the soldiers themselves. No-one is going to drag a MBT onto an island measured in acres, and even if an IFV could potentially be a formidable adversary after having swam out, it would probably soon find itself hampered by the close quarters of the battle. However, to establish the shock and awe needed for an amphibious assault, indirect fire will play a key role. The individual companies of the battlegroup feature light mortar troops with three 81 KRH 71 Y, 81 mm light mortars, and these are carried on two landing crafts. These are relatively light, and need to be set up on a neighbouring island within 5 km of the battlefield to be able to participate in the landing. Alternatively, they can be brought onshore and support the landing from the beach, as long as the island is big enough.

But while 81 mm mortars are a handy weapon for suppressing fire, the battelgroup will need heavier rounds if it is to be able to dig up an entrenched enemy. This is where the heavy mortars come into the picture. The TOE of RANNJP featured a single mortar battery with six heavy 120 KRH 92 mortars, towed by trucks. The basic mortar is a competent if somewhat unspectacular weapon. It is able to fire HE, flare, and smoke rounds, and features a max range of approximately 7.5 km while weighing in at 500 kg in its assembled state. However, it is the sole unit in the battlegroup that is carried on trucks and not on fast landing crafts, significantly reducing its effectiveness and tactical flexibility. This is especially problematic as the archipelago is a prime area for the indirect approach, with tactics such as skipping islands and isolating enemy strongholds by cutting off their supply lines. This becomes vastly harder if any potential targets have to be within ~7 km of controlled mainland where the small convoy of trucks and mortars can pull aside and set up positions. Further complicating the problem is the fact that the once mighty Finnish coastal artillery has been reduced to a shadow of its former self, with most of the fixed installations having been disbanded and the towed pieces having been transferred to the army. In conclusion, the Coastal Jaeger Battlegroup need a organic unit that can keep up with its fast assault crafts, and which can deliver heavy and accurate indirect fire support.

Luckily, the problem isn’t new, and as mentioned Patria has had a solution ready for over a decade. Originally this centred on the joint Finnish-Swedish AMOS twin-barrelled mortar turret. This was originally planned for and tested on the Swedish CB 90 H, but the 15 m long and relatively narrow vessel proved too unstable to carry the turret, and the number of rounds carried was also limited. The Swedish forces started planning for a new vessel, SB 2010, designed around the turret, while the Finnish Navy instead focused on a lighter single-barrel version. The former was eventually destined to remain on the drawing board, while the later became the Patria Nemo, which was successfully tested on a modified Jurmo-class fast landing craft. No order was however placed, and the focus of the Finnish coastal jaegers moved from the 15 m long Jurmo to the larger and significantly more versatile 18 m Jehu-class (also known as U700-class or Watercat M18 AMC).

Compared to the Jurmo, the Jehu marks a significant step up in all-round capability, including firepower (sporting a RWS with E/O-sights and 40 mm grenade-machine gun with a coaxial 7.62 mm PKM), protection (both ballistic and NBC), and mobility. Through and through, the Jehu is simply the best vessel in its (specialised) class worldwide, and has considerable room for up-gunning in the form of weapons fitted for but not with. This includes the Nemo, where the bigger hull would remedy the space and stability issues encountered on smaller vessels.

The Nemo-Jehu is exactly what the coastal jaegers need. Here is a highly mobile system, mounted on the same hull as their primary means of transport. It allows for both direct and indirect fire, and can also fire on the move. The mortar allows for operation of all standard 120 mm rounds, and has all the niceties one can expect from a modern turreted system (quick response time, MRSI with up to five rounds, high rate of fire, full NBC protection, …). While one should always treat the marketing slogans for modern systems with a grain of salt, there’s still plenty of situations where the simple number of barrels count for more than MRSI-capability, there is little to deny that three or four Nemo-Jehu’s would offer significantly better and more flexible indirect fire support than the current setup of six towed 120 mm mortars. The only benefit provided by the later would be the fact that they are easier to replace than the highly specialized vessels.

What it comes down to is, naturally, cost. In today’s cash-strapped defence forces, there are a number of programs that are all urgent and crucial for the units in question. Still, it is hard to argue that we should invest 34 million euros in new assault crafts for the coastal jaegers, and then not go the extra mile to buy three or four additional vessels to be able to effectively support the first twelve during amphibious landings. The unit price for the first twelve Jehu’s, a program cost of 34 million euros split equally over the whole series, is roughly 2.8 million euro per boat. The Nemo-Jehu is probably in the same range, depending on the number of hulls ordered, as the engineering costs are markedly lower. The concept is already here.

The Coastal Jaeger Battlegroup need the Navy Nemo. As the major units of the navy are starting to take shape, forgetting the smaller craft could prove to be a costly mistake.

In the interest of full disclosure, the company I work for is a component supplier for the Jehu-class.  All info given in this post is completely based on open sources, and represents my personal opinion only.

On Research Vessels and AIS-tracking

The appearance of Russian research vessel Akademik Nikolaj Strakhov (named for the 19th century philosopher with the same name) just outside of the Swedish island of Gotland last week caused some discussions on social media. In this blog post I will address two topics that caused discussion, controversy, and sometimes, misunderstandings: The vessel itself, and the AIS-system used for tracking its whereabouts.

Akademik Nikolaj Strakhov

To start with the vessel is built in Finland in the mid-80’s as one of four sisterships of the Akademik Boris Petrov-class. It is government owned, and apparently operated in a geological research role. Interestingly enough, the vessel seems to have spent over a year broken down in the Indian Ocean, due to bureaucracy and a lack of funds. It is however now back in business, and homeported in Kaliningrad.

The towing of the vessel following it breaking down outside of the Maldives in 2013

To be clear, the vessel behaves exactly as a geological research vessel would. It reported restricted maneuverability, and slowly coasted along on a general North-South course just outside of Swedish waters. “Restricted maneuverability” is a defined term that refers to a vessel “which from the nature of her work is restricted in her ability to manoeuvre as required by these Rules [COLREG] and is therefore unable to keep out of the way of another vessel”. This can be due to e.g. the vessel conducting dredging, cable-laying, towing, mine-clearing, or launching aircrafts. What it doesn’t include is vessels that have broken down, which instead use the signals associated with “not under command”. However, general research work often do fall under the restricted maneuverability, and e.g. survey work would certainly require the vessel operating at slow speed while unable to deviate from the planned course.

Akademik Strakhov’s sistership Akademik M. A. Lavrentyev being intercepted by Japanese Chikugo class frigate JS Tokachi (DE-218) and the US Navy while operating in the Sea of Japan in 1987. Source: Wikimedia Commons/US Navy/PH2 (NAC) Paul Self

The problem obviously is that the Soviet Union and Russia has a long tradition of using civilian vessels such as trawlers and research vessels for more or less clandestine intelligence gathering. It is telling that the only picture of an Akademik Boris Petrov-class ship on Wikimedia is of Strakhov’s sister Lavrentyev being intercepted by Japanese and US forces. And with the Russians regularly employing all parts of the state apparatus in their full-spectrum conflict approach, it would be naive to believe that this scheme hasn’t continued. Is the Akademik a spy ship? That is impossible to say. FVÖ16, this year’s largest exercise conducted by the Swedish Air Force, saw Gotland having being host to a number of units. Also, the Nynäshman-Ventspils and Stockholm-Fårö-Ventspils subsea cables are found in the area, as well as the brand new Markgrafenheide-Helsinki cable, meaning that even if the vessel would only be conducting bottom mapping, the research would indirectly produce data which would be of some value for the Russian Armed Forces.


The AIS system is best thought of as the maritime equivalent to the frequently discussed transponders carried (or not) by aircraft. For the technical part, it sends packets of data over the normal VHF-band, which usually include the vessel’s name, position, heading/course, speed, and potentially a number of other pieces of information (turn rate, heel, destination, ETA, current mode of operation, …). The system provides a simple and inexpensive way of keeping track of traffic in an area, as well as quickly recognising important features of other ships operating in your area (such as restricted maneuverability). It is also employed in distress transmitters, with AIS-SART transmitters being small self-contained AIS-transmitters  that can either be brought along in a survival craft or, in the worst case, be left floating when a vessel sinks.

However, it is important to be aware of the limitations of AIS.

To begin with, as noted the AIS signal is basically just a pre-programmed and automatic VHF-radio. It has limited range, which can be limited further by bad weather or atmospheric conditions. It is also possibly to turn it off by the flick off a switch, in case you are heading somewhere you don’t want to be seen. There are legitimate scenarios where this is the case, with e.g. merchant ships turning off their transmitters if they fear they are at risk for a pirate attack.

The system has also started to show its age, and while this contributes in making it affordable, it also means that it is designed with openness prioritised over security. As such, it can relatively easily be compromised by hackers, which can feed false data into the system. This can include drawing fake tracks, creating non-existent vessels, or making existing ones disappear. While this caused quite a stir when a publicised case took place a few years back, there has so far not been any major incidents caused by hacking the system. One issue working against any malicious use being successful is that there are a number of happy amateurs, commercial, and state actors following up the marine traffic around the globe, so any attempt would be discovered in a relatively short span. Part of the reason behind this is that there regularly appear faulty information on the AIS system due to broken sensors or operator error. However, in the same way that transponders shouldn’t be seen as telling the whole truth on airliner traffic, AIS shouldn’t be trusted to convey the whole picture of maritime traffic.

Squadron 2020 – Made for the Finnish Coastline

laivue2020_uusi_logoThe acquisition of four multi-purpose corvettes by the Finnish Navy as part of the Squadron 2020 (fi. Laivue 2020) program received some serious flak by BGen (ret.) Lauri Kiianlinna in Helsingin Sanomat last Friday, of exactly the kind I warned would become widespread due to the Navy’s somewhat lacking marketing of the project. While I agree with Kiianlinnas assessment that the Army need further funds and that the ground based air defence needs to be fleshed out, many of the points raised in opposition of the project are either based on misunderstanding or in some instances flat-out wrong. As noted, this is partly a failure on the part of the Navy, who in today’s economy more than ever has to explain not only what they need, but also why. A simple “Trust us, we’ve checked the issue” (while correct) is no longer enough to the public or the other cash-strapped branches of the defence forces.

Finland is for all practical purposes an island, and the only way we will keep our supply lines open for any extended time is through cargo vessels that enter the Baltic Sea in the Danish Straits, before sailing up the length of the Swedish coast until arriving in Finnish ports. This means that while the navy cannot win any wars for Finland, it can certainly lose them.

As such, Finland will need a navy to escort our merchant vessels at the very least until they reach Swedish waters. Currently this is done by a number of smaller vessels operating together to perform different individual roles:

  • The Hämeenmaa-class minelayers are operating as the squadron leader/flagship, while having a limited ASW- and anti-air capability
  • The Hamina-class FAC provide anti-ship missiles and a limited anti-air capability
  • The Rauma-class FAC provide ASW-capability in the form of the only dedicated submarine-hunting sensor in the Finnish Navy as well as featuring limited ASW-weaponry. If the towed array is left home, it can instead use anti-ship missiles

It should be noted that a three-ship squadron like this faces a number of tough choices:

  • A total of no more than 16 ITO 04 (‘Umkhonto’) surface-to-air missiles featuring a short 14 km range are available for air cover
  • For the Rauma to find a submarine it needs to listen for it, meaning that it would prefer to keep some distance to the other ships. However, doing so lessens the protection offered by the short-range ITO 04 mounted on the other vessels
  • None of the vessels sport any torpedoes, so If a submarine is found the vessels will attack it by driving towards it well within torpedo range while firing ASW-mortars

These ships, especially the Haminas, are very potent for their class. However, there is only so much equipment that can be fitted into the limited hull sizes available. Both of the FAC-classes also lack the ability to operate in ice, due to their light (and vulnerable) aluminium hulls. Their small size also seriously hamper their endurance, forcing them to return to port at short intervals. For a navy in which hiding in the cluttered archipelago is a central part of the doctrine, having to frequently return to fixed points to bunker up on fuel, supplies, and weapons, is far from ideal.

Lohtaja 1-10 144
The Finnish idea regarding how to kill a submarine is drive towards it at speed, fire of a salvo of these at 400 meters, and hope the submarine doesn’t figure out a firing solution for their  18+ km ranged torpedoes. Saab Elma ASW-600 on a Rauma-class FAC. Source: own picture

The need for bigger hulls

The size is not a product of the urge to venture further into the Southern Baltic Sea or on international missions, but of the need to provide vessels that are able to operate in Finnish waters year-round, able to handle the varied threats they may encounter.

This is where the main problems of the opinion piece are. The new ships will not further strain the limited air defence resources available, they will not be sitting ducks, and they will not be restricted by ice. On the contrary, they will be able to hide better than the current fleet due to being less reliant on visiting known locations, they will carry their own air defence, and their big steel hulls will offer them ice-going capability as well as better resistance in the face of battle damage.

Of great interest is the vertical launch system (VLS) seen on the render pictures released by the navy. I have discussed these in greater detail on the blog earlier, but the conclusion is that they would bring a marked increase in the air defence of not only the ship themselves, but also of the general area of operations. In fact, in the best of world’s we might even get to see the Aster 30 onboard the corvettes, which would finally give the (southern parts of the) country a measure of protection against ballistic missiles. As such, the claim that these would tie up valuable air defence resources is wrong, and instead they might actually free up army units.

The discussion regarding the range of the weaponry is somewhat simplified. The max practical range is nowadays rarely reliant on what the sales material claim the missiles are capable of. Instead, the main question is how far out the enemy can be accurately located. Another issue that one rarely want to fire all missiles straight at the enemy, because A) it makes it easier to defend against compared to if the salvo is routed to come in from different angles at the same time, and B) it gives the enemy a vector to follow back to the location of our firing battery. To sum it up, the Navy wont fire anti-ship missiles, either from trucks or naval vessels, to Gotland any time soon, regardless of how the range rings look on the map.

One of the concept renders presented by the navy. Note hatch for towed array at stern(?) and VLS-array at the front. Source: Finnish Navy

When it comes to anti-submarine weapons, it seems like we will finally get a ship armed with torpedoes and proper sensors, which will make it possible to locate and fight off one of the most elusive threats our shipping lanes currently face. This is especially important as we currently lack any kind of airborne ASW-capability, and the only way to find submarines lurking outside of our archipelago is through the use of ships.

The other possibility is to assume that we can keep our waters protected without own ships, which is an interesting concept on paper. By employing shore-based anti-ship and surface-to-air missiles we would be able to ward off any intruders, or so the theory goes. However, by the very nature of these systems, they lack the operational mobility to keep up with merchant vessels moving in Finnish waters along the coast, and as such need to be pre-positioned so that they can cover the expected enemy attack vectors. They then need to be fed target data, and feature a redundancy in both firing units and sensors, so that the enemy isn’t able to create a gap in our defences where they can strike at our lifeline with impunity simply by knocking out a battery or two.

This can all be done, but to be fair it is highly doubtful if this advanced network of mutually supporting coastal sensors, truck-mounted anti-ship batteries, submarine hunting helicopters, and surface-to-air missiles, would be any cheaper than the corvettes. Crucially, the system would lack the flexibility offered by a surface squadron of multirole vessels, which are able to move with the merchant convoys, carrying their own sensors as well as weapons to fend of air, surface, and sub-surface threats. The similarities to the discussions regarding ground based air defences contra getting new fighters are striking. This isn’t a case of “either/or”, but rather that a strong defence will have to be made up of multiple layers of different systems with their own strengths and weaknesses working in unison, and I fully expect the Navy to start looking into replacing the truck-mounted MTO 85M at some point in the future.

When it comes to coastal defence, I would like to see Squadron 2020 and ground units being networked with our HX-fighters, to let the fighters provide accurate target data through the use of a modern data link while letting the others act as silent ‘shooters’ with their radars turned off.  This is a concept which for example Saab already has as an option for which includes both their air units and naval command and control systems, and one would assume that there is a requirement for HX and Squadron 2020 to be able to communicate with each other.

It isn’t about the Navy against the Army or the Air Force. At the end of the day, we’re all in this together.

Epilogue: The Panssarilaivat – White Elephants of the 1930’s

The Väinämöinen-class of two coastal defence ships (fi. Panssarilaivat) has long been regarded as the schoolbook example of wasted money. Being expensive and manpower intensive, they took almost no part in the Second World War, and the navy still managed to lose one of them with a large loss of men during one of their few wartime sorties.

However, while I agree that it was a strange decision to invest in major surface units when the army lacked anti-tank weaponry and artillery shells, the other side of the story is often forgotten. The war did play out in an extremely surprising way. The Winter War was fought almost entirely while the sea was frozen, and when the Continuation War broke out it didn’t take long until the Germans had occupied the whole southern coast of the Baltic Sea from the Danish Straits up to the outskirts of Leningrad. This made the relatively strong and modern Baltic Fleet trapped in their bases around the city until the end of the Continuation War. The exception was the submarine fleet, which every summer broke out to try and wreak havoc amongst Finnish and German shipping in the face of Finnish and German subchasers and submarines (until the Germans and Finns installed two nets over the entire Gulf of Finland!).

If things would have played out differently, and Finland would have had to stand alone, two floating coastal fortresses could suddenly have proved to be rather useful after all.