No Finnish Harpoon/ESSM-order (at least for now)

As the headline says, yesterday’s big news from the naval sector is not that Finland has ordered the Harpoon and/or the Evolved Sea Sparrow Missile (ESSM). In fact, what has happened is that the US offers for two major Finnish naval programs have become open knowledge. This happened as the US Defense Security Cooperation Agency has requested clearance for the sale of 112 RGM-84Q-4 Harpoon Block II+ ER anti-ship missiles (of which twelve are of the older RGM-84L-4 Harpoon Block II version which will be upgraded) and 68 ESSM missiles. These kinds of pre-clearances are not uncommon, and allow for a rapid deal following a (potential) procurement decision by a foreign customer (thanks to Aaron Mehta for providing insights about US export).

iwjcvnp
One of the latest renders, showing the refined corvette concept. Source: Finnish Defence Forces / Insinööriupseeriliitto

The background is two ongoing Finnish projects: the Pohjanmaa-class multirole corvettes and the PTO 2020 heavy surface-to-surface missile. The PTO 2020 will be found aboard the Pohjanmaa-class as well as replacing the current MTO 85M (roughly a RBS 15 Mk II) on the Hamina-class as part of their MLU as well as in truck-mounted batteries. As the MLU for the Hamina is very much underway already, the winner of the PTO 2020 will be announced during the first half of this year. I am still standing by my opinion that the RBS 15 Mk 3+ and the NSM are the two frontrunners, and would be somewhat surprised if Harpoon won the trophy (and even more so if the Exocet MM40 Block 3 did, though everything is possible).

The Pohjanmaa-class is still in the design stage, with the main contract(s) to be signed this year, and the building phase to start next year. The armament shown on renders include two quadruple mounts of PTO 2020 amidships, the new lightweight torpedo from Saab, the BAE/Bofors 57 mm Mk II deck-gun, and a battery of vertical launch system-cells (VLS). The two main VLS-systems on the market are the French Sylver and the US Mk 41 (a modernized version called Mk 57 is also available, and mounted on the Zumwalt-class). Both are available in different lengths, with the shortest Sylver, the A43 (an earlier A35 concept seems to have been dropped), being around 4.3 m long (or rather, high), and the shortest Mk 41 being 5.2 m long. The 8-cell module of the Sylver is also smaller and lighter than the corresponding 8-cell Mk 41 module, in part because the silos themselves are a few centimeters smaller. For a full run-through of the differences, see this post by the UK Armed Forces Commentary-blog, where the differences are discussed with a keen eye to the pros and cons for the British Type 26 Frigate.

essm_launch_m02006120700079
An ESSM leaving a Mk 41 cell. Source: US Navy via Wikimedia Commons

Now, while some vessels, such as the current Finnish Hamina-class and the upcoming British Type 26, feature dedicated cells to their main air-defence assets, the VLS on the Pohjanmaa will likely be home to the ships main air defence weapons. This becomes evident as the ESSM offer is for the weapon quad-packed in Mk 25 modules, designed to fit the Mk 41-system. If the ESSM would be chosen, the Pohjanmaa-class would be by far the smallest vessel to feature the system. The decision to offer the Mk 41 is interesting, as there is a dedicated Mk 56 ESSM VLS-system if the sole use would be for the ESSM.

The ESSM is certainly a competent weapon, and shows what the Navy is aiming for. 8-16 cells with quad packs would provide for 32-64 medium-ranged missiles, a huge boost compared to the current 8 short-range Umkhontos found on the Hamina. While the Mk 41 is too big for the Hamina, the Mk 56 mean that half a dozen ESSM’s could potentially be fitted as part of the MLU if the Navy choose to go down that (unlikely) route. More interesting is that the ESSM could be fired from the Army’s NASAMS surface-to-air batteries, letting the Navy and Army use the same missile stock. The upcoming ESSM Block 2 will feature an active seeker based on that of the AMRAAM, and is potentially the version offered to the Pohjanmaa.

Interestingly, the AMRAAM-ER is a AMRAAM married to the engine of the ESSM, and no, I don’t know what exactly is the difference between an AMRAAM seeker married to an ESSM engine and an ESSM engine married to an AMRAAM seeker.

I am still inclined to believe that the Sylver might be the Navy’s preferred VLS due to the smaller footprint. However, as with the PTO 2020, we will just have to wait and see.

Hamina does the Classics

The question of the upcoming deck-gun for the refurbished Hamina-class FAC was cleared up today, as BAE announced a deal for four Bofors 40 mm Mk. 4 to equip the vessels of the class. This is in line with the original reports, and means that the vessels will retain an amount of gun-fighting capability post-MLU, an especially important feature considering the small magazine sizes of both the heavy anti-ship missiles as well as the Umkhonto surface-to-air missiles.

I’ll admit that the headline above is slightly misleading, as while the words “40 mm” and “Bofors” certainly are a classic combo, the Mk. 4 share little except the calibre with the classic Bofors L/60 of WWII-fame. In between the two, the Rauma-class FAC and importantly the Kataanpää-class MCMV (poised to stay in service alongside the Hamina) are both equipped with the Bofors 40 mm Mk. 2. This is based on the L/70 long version which is more or less a completely new weapon using a longer round (40 x 364 mm vs 40 x 311 mm) when compared to the original L/60. The L/70 first entered service in 1948, but has proven to be a solid design which is found in a large number of single- and twin-mounts in navies throughout the world.

40Mk4
The Bofors 40 mm Mk.4 turret. Source: Courtesy of BAE Systems

The new Mk. 4 turret still rely on the same L/70 weapon, but apart from looking like a ball (or rather something like a slightly distorted truncated hexagonal trapezohedron, but let’s stick to ball for now), the nice thing is that it is able to switch between different kinds of round on the fly (up to 100 rounds can be stored in a ready to fire mode). Further improving the flexibility its ability to use programmable 3P rounds, which allows e.g. for precise air burst or armour penetration capability from the same round, the exact mode being set the instant before the firing takes place. Finland is now the third country to acquire the Mk.4 after Sweden (a single patrol vessel that underwent MLU, since retired) and Brazil.

In the meantime, work on the first vessel to undergo MLU, FNS Tornio (’81’), started right away after the deal with Patria was announced, and already by the 16 January Finnish public broadcasting company YLE was able to show pictures from Western Shipyards in Teijo which showed that the earlier 57 mm gun and most sensors and antennas had been stripped from the vessel. Interestingly enough, the CEO of Western Shipyards states that they secured the contract in close competition with Uudenkaupungin Työvene and RMC, the shipyard which is set to build the new Pohjanmaa-class (Squadron 2020). While the work would without doubt have provided valuable experience to RMC, it might very well have been hard pressed to finnish all four vessels before the first Pohjanmaa start to require full focus.

Saab Bound for Naval Grand Slam?

As the modernisation of the Finnish Navy’s surface fleet continues, Saab has managed to secure two key contracts. Earlier, it was announced that Saab would provide the new anti-submarine torpedoes set to be fielded by both the modernised Hamina-class FAC as well as the new Pohjanmaa-class corvettes (Squadron 2020). In many ways this was the low hanging fruit for Saab. Not only is development of their new torpedo well underway with Sweden as the launch customer, it is also based on proved technology in the form of the earlier Torped 45, making it possible to operate the older version from the installed tubes until the new Torped 47 is ready. Perhaps crucially, it is one of few weapons of its class designed with an eye to use in littoral and brackish waters, key features of the operating environment of the Finnish Navy.

PCG Hamina 2015
Leadship of the class, FNS Hamina (’80’) two years ago. Note forward 57 mm main gun, roof-mounted CEROS 200, and 12.7 mm NSV heavy machine gun behind bridge. Source: Merivoimat FB

This week Saab landed a bigger fish, as it was announced that they will provide the combat management system, fire-control system, integrated communication systems, as well as optronic sensors for the Hamina MLU. The odd bird out is the fact that the order include the CEROS 200 optronic sensor, which is already fitted to the vessels. Either these are worn out to the extent that buying newer is cheaper from a maintenance point of view, or there have been internal upgrades of the CEROS 200 since the original deliveries almost twenty years ago that have not been reflected in the name of the product, but are extensive enough to warrant buying complete units and not simply giving the CEROS its own MLU.

Another interesting inclusion is the Trackfire remote weapon station, with the Hamina now being the third class in the Finnish Navy to receive the RWS. The use of the Trackfire on the Hamina isn’t specified, but the wording in the press release does seem to indicate a single system per ship. As such, while it is possible that two stations per vessel will replace the port and starboard manually operated 12.7 mm NSV heavy machine guns mounted amidships, the likelier scenario is that they will take the place of  the main armament. There has been talk (so far unconfirmed?) that the main 57 mm guns (Bofors Mk 3) of the Hamina vessels will be removed as weight saving measures and transferred to the four Pohjanmaa-class vessels, and this would fit right in. While the Trackfire is usually seen fitted with a heavy machine gun as the main armament, it is capable of holding “lightweight medium calibre cannons”, i.e. weapons up to and including low-pressure 30 mm ones. This is not an unheard of solution, with e.g. the Israeli Typhoon RWS being used with a number of the different Bushmaster-series of cannons as the main or secondary gun on a number of different naval vessels out there. A 30 mm Bushmaster, the Mk 44, is already found in Finnish service on the CV 9030 IFV, but before anyone gets too enthusiastic it should be noted that this uses a longer high-pressure round, so there is no synergy to be had. Instead, something like the M230LF, based on the chain gun found on the Apache helicopter, is the more likely candidate.

Dropping down in calibre from 57 to 30 mm is not necessarily a bad thing, as the main use of the weapon will likely be air defence and intercepting light craft. Modern 30 mm rounds will do quite some damage against soft targets such as warships as well, though naturally you won’t win a gun fight against a large vessel sporting a 3 or 5 inch gun anytime soon (to be fair, if you find your FAC up against a destroyer at gun range something has likely gone very wrong already at an earlier stage of the battle).

13266107_825964914203716_103010983375369993_n
Jehu-class landing craft with a Trackfire RWS on top of the superstructure. For the landing crafts the usual mount is either a 12.7 mm NSV or a 40 mm GMG, with a 7.62 mm PKM as a co-axial weapon. Source: Merivoimat FB

At the heart of the Hamina order is the 9LV, an open architecture system which allows integration of different sub-systems, sensors, and weapons into a single integrated package. As such, different building blocks can be integrated into CMS systems from other manufacturers, or other manufacturers’ subsystems can be integrated into the 9LV CMS. That Saab gets this kind of a complete deal including both the CMS, FCS, integrated communication systems, and part of the weaponry is significant, especially when looking towards the soon to be decided contract for a main systems integrator for the Pohjanmaa-class, a job which will likely be of significantly higher value than the Hamina MLU.

The main implications is that this makes Saab the front-runner for the Pohjanmaa-class CMS. Earlier the Rauma-class FAC received the 9LV during its MLU, and now on the Hamina 9LV is replacing Atlas Elektronik’s ANCS 2000-system. While the requirements for the CMS of the Hamina and the Pohjanmaa are not completely identical, there certainly is something to be said when the former replaces one of the shortlisted CMS’s with the another one, instead of simply upgrading it. It should also be remembered that several subsystems, including most weapons, will be the same for both vessels.

Yet another noteworthy development is that Saab recently announced a new fixed face version of their Sea Giraffe, in the form of the Sea Giraffe 4A FF. I have earlier questioned whether Saab’s twin rotating mast solution would satisfy the requirements of the Navy, and it seems clear that the 4A FF is a possible solution for the Pohjanmaa’s main long-distance sensor. As Saab is also well positioned to secure the order for the new PTO2020 surface-to-surface missile, they just might be on track to secure all major Finnish naval contracts they are bidding for.

18699896_1058538577613014_610446093282984977_n
FNS Pori (’83’), the newest of the four Hamina-class vessels, underway. Source: Merivoimat FB

Meripuolustuspäivä 2017 – Maritime Defence Day

The annual Finnish maritime defence day jointly arranged by the Navy and the Naval Reserve took place in Turku this year, and with a record-breaking audience. The program followed the established form, with lectures on the state of the Navy and the Reserve, as well as a panel discussion on current topics. On the whole, the Baltic Sea has become more important strategically and militarily over the last decade, but the current year has so far been relatively calm when compared to the last few ones.

Vice admiral Veijo Taipalus, commander of the Finnish Navy. Source: Own picture

As readers of the blog all know by now, the Navy is living in exciting times. The Pansio-class MLU is finishing up, after which the focus will shift to the MLU of the four Hamina-class fast attack craft. As has been reported earlier, the vessels will gain a serious anti-submarine capability in the form of light torpedoes. The big problem is still their lack of endurance and a room for growth, and I haven’t seen an answer to whether the needed ASW sensors and weaponry can be carried together with a full complement of missiles. The limited ice-going capability also won’t be going anywhere, which nicely brings us back to Squadron 2020 and it’s design.
 

Some ask if it’s too big for our archipelago.

It isn’t.

The noteworthy thing about the project was in many ways the lack of any spectacular news, in that everything seems to be fine. The acquisition enjoys broad political support, and is moving on according to schedule. This in turn means that the upcoming year will bring quite a number of interesting developments, with a number of key contracts awaiting awardment as well as procurement decisions to be made. Bigger news was perhaps last week’s speech by the chief of defence, general Lindberg, who noted that the Navy’s identified need was for six to eight vessels. Still, I won’t be holding my breath for a political decision to increase the size of the project.

The coat of arms of Pohjanmaa, here seen on the walls of Heikkilä sotilaskoti, will soon grace the first SQ2020-vessel. Source: Own picture

In the mid-term, the last fixed coastal guns are closing in on their due date. The 130 TK is a highly advanced weapon for it’s class, with a surprisingly high level of protection thanks to being embedded in the granite of the Finnish archipelago. Still, there’s no way around the fact that their fixed positions hamper their survivability. Following their eventual retirement there will be a gap between the long-range surface-to-surface missiles of the ongoing PTO2020 procurement and the short-range RO2006 (Eurospike-ER). Exactly how this firepower gap for intermediate range and/or targets of medium size will be solved is still open, though it was noted (without further details) that there are some “impressive capabilities” found amongst modern anti-tank missiles. Might this be a reference to the Spike-NLOS as a replacement for the 130 TK? The quoted range of “up to 30 km” isn’t too far off from that of the 130 TK.

Like the rest of the defence forces, the Navy is placing ever bigger importance on international cooperation. Sweden, being the main partner, received considerable praise, but also the increased cooperation with other Baltic Sea States was noted, with Estonia being singled out as a partner of growing importance. Next year’s main focus is obviously the major international exercise Northern Coasts, or NOCO18, which will be hosted by Finland during the autumn.  Turku is the main base of operations, and will also host the main event earlier next year when the Navy celebrate its centennial.

Second after readiness, NOCO is the main focus of the Navy at the moment.

For the Naval Reserve, things are moving on in a steady but unspectacular fashion. The umbrella organisation itself celebrated 20 years in 2017, though several of the member organisations outrank it in seniority. Oldest is the Rannikkosotilaskotiyhdistys, responsible for the soldiers’ canteens of the Navy, coming in at a respectable 99 years.

Rannikkosotilaskotiyhdistys has saved the day for many a young conscripts with a cup of coffee and a munkki (sweet doughnut). Their work for maintaining the morale of the troops should not be underestimated. Source: Own picture

Originally modelled after the German Soldatenheim, the Finnish sotilaskoti have been around since the very early days of independence, and the naval branch got deservedly decorated for their stellar service to the Navy and its servicemen and -women.

In the end, it’s probably good that we haven’t got anything more exciting to tell you about…

Until next year!

Collisions at Sea

Following two separate high-profile collisions of USN destroyers in the Asia-Pacific, there has been a host of theories and questions regarding how these tie in together. This post is not an attempt at determining the cause of the collisions, but rather a general comment on similarities and factors differing between the USS Fitzgerald (DDG 62)/ACX Crystal and USS John S. McCain (DDG 56)/Alnic MC collisions, and some of theories thrown around. I won’t provide any conclusions, but rather ‘Food for thought’, as my high-school teacher would have put it.

To begin with, both destroyers are of the same Flight I sub-variant of the Arleigh Burke-class destroyers, which make up roughly the first third of the destroyers produced in the series. Both were operating in the western parts of the Pacific when being hit by civilian vessels in the side. There are however important differences as well.

  • USS Fitzgerald was hit in the starboard side, while sailing somewhat south of the main sea lane leading into the Bay of Tokyo from the west,
  • USS John S. McCain was hit in the port side, while roughly at the eastern entrance of the Singapore Strait.

While the waters around Japan are far from deserted, they still pale in comparison to how busy the seas around Singapore are.

When discussing collisions at sea, it is important to understand one basic difference between maritime traffic and the rules of the roads: as long as as you have water under the keel, you are more or less allowed to go anywhere you want. As there are no road signs or traffic lights, issues such as right of way are instead dependent on the position of vessels relative to one another. These guidelines are found in an international document entitled ‘Convention on the International Regulations for Preventing Collisions at Sea, 1972‘, though understandably it is usually referred to by its abbreviation: COLREG (or COLREGs).

fitzgerald_collision_diagram
USN illustration of the collision between USS Fitzgerald and the ACX Crystal. Via Wikimedia Commons.
The most basic of the rules are that a ship coming from starboard (right) has the right of way, and a ship coming from port (left) has to give way. If two vessels meet head-on, both will generally hold to starboard (i.e. the seas feature right-hand traffic), though there are also a number of readily available signals which can be used to tell a nearby vessel that you will pass on their port side.

As such, a first thought is that the USS Fitzgerald would have had to give way to the ACX Crystal, while the Alnic MC would need to give way to the USS John S. McCain. However, it needs to be remembered that large ships take considerable time to turn or bring to a halt. For the collisions discussed here, it should be remembered that the destroyers are considerably more nimble than large container ships and tankers. There’s no cutting in front of a tanker just because you in theory have the right of way!

For the USS John S. McCain/Alnic MC-collision, the Singapore Strait feature a traffic separation area which adds another factor into the equation. This can be described as a highway of the sea, where westbound traffic all flow in a northern lane, with eastbound flowing in a southern lane, and in between there is a off-limits separation zone (virtual roundabouts allows vessels to enter ports in the area). These are found in other narrow areas with relatively heavy shipping as well, including the Gulf of Finland. The collision seems to have taken place just at the entrance to the traffic separation area. It is possible that these special arrangements would have caused one of the vessels to make unexpected course adjustments, or that a third vessel did something which caught the attention of the bridge watch to the extent that they did not notice the more immediate danger.

There has been a number of speculations in that there would be foul-play such as GPS-spoofing or hacking of key systems would have caused the accidents. However, as described above the COLREG does not depend on the position of your vessel, nor does it allow the bridge watch to depend upon systems such as AIS for watchkeeping. Regardless of if some of these were out of order, the watch need to observe the position of the other vessels around it and react accordingly (i.e. keep a safe distance and give way to vessels according to relevant rules). Even if something was hacked or the GPS was out of order, and to my understanding there is no indication of this being the case, this should not cause a collision in and by itself.

110203-N-9818V-091
The helm of the USS Fitzgerald, manned by Cmdr. Velez, then commanding officer of the destroyer. Source: U.S. Navy photo by MCS 1st Class Jennifer A. Villalovos via Wikimedia Commons
There has also been claims that the McCain would have temporarily lost steering, only to regain it later. This could be a number of issues, ranging from running into something physically obstructing the movements of the rudder, to something being wrong with the equipment operated by the helmsman, or anything in between the two. It is also unclear to me what exactly the ‘loss of steering’ include. For warships, there are usually multiple steering stations and some kind of last-ditch emergency steering which overrides any steering commands from the helm stations. However, if the loss of steering was only temporary, it might be that there were no time to initiate emergency steering procedures. It is also not uncommon for sudden and unexplained steering issues to eventually be traced back to the helmsman not fully understanding the workings of the system, e.g. how to properly switch between autopilot and manual control.

This brings us back to an issue which has been raised, and which I believe might very well explain the issues at play. The US 7th Fleet is severely overworked, with no time being allocated for training in the deployment schedule of the destroyers and cruisers. This in turn means that much of the training is handled while on deployment, with the older crew members likely overseeing younger ones during time they otherwise would be off-duty. In the end, this likely leads to the crew as a whole being less rested. The background to this is obviously the lack of any frigates or corvettes in the US Navy, meaning that the destroyers and cruisers has to do a host of tasks which they are overqualified for, and with tensions with China increasing the need for qualified ships are going up as well. The LCS-project was meant to solve part of this issue, providing a light ship for patrol and flag-waving duties were a destroyer isn’t needed, but as is well-known this has run into problems and delays.

 

A Squadron from the North

Few readers of the blog are likely to have missed the fact that the world’s largest submarine and sole survivor of the Akula (NATO-nickname ‘Typhoon’) class recently paid a visit to the Baltic Sea for the Russian Navy Day parade. TK-208 Dmitriy Donskoy grabbed most of the headlines, but as with all good tricks, it’s when you watch the ball too closely that the magic happens.

hieronymus_bosch_051
Hieronymus Bosch: “The Conjurer” (via Wikimedia Commons)

In the Baltic Sea the submarine completely lacked suitable weaponry, sensors, and quite frankly space to move around. However, the world’s largest surface combatant, Pyotr Velikiy (‘099’), travelled together with the submarine. In addition, the cruiser Marshal Ustinov (‘055’) and destroyer Vice-Admiral Kulakov (‘626’) both travelled to the Baltic Sea to join in the festivities from the Northern Fleet, with the frigate Admiral Makarov (‘799’) joining from the Black Sea Fleet. These surface combatants stood for the real increase in firepower, and deserve a closer look:

dfrqt2ew0aawg8l
Note hatches for vertically launched weapons on foredeck. Source: FLVFOT, Flyvevåbnets Taktiske Stab

Pyotr Velikiy: at 251 meter long and 24,300 tons standard displacement, she is a huge vessel by any standard. Often referred to as a battlecruiser, because she packs significant firepower but lacks the armour associated with ‘real’ battleships. The Kirov-class was launched in the 80’s, with the goal of intercepting and destroying the carrier task forces of the US Navy by unleashing a barrage of P-700 Granit missiles. Originally named Yuri Andropov, she is currently the only vessel of the class in operational service. Powered by two KN-3 nuclear reactors supplemented by oil-fired boilers.

c2abd09cd0b0d180d188d0b0d0bb_d0a3d181d182d0b8d0bdd0bed0b2c2bb
Source: Mil.ru via Wikimedia Commons

Marshal Ustinov: the Slava-class of cruisers are the little sisters (186 m and 9,380 tons) of the Velikiy, and are made to perform the same missions of targeting enemy surface vessels (with the P-500 Bazalt) and functioning as flagships. The Ustinov was launched in 1982, making it seven years older than the Velikiy.

vice_admiral_kulakov-2
Source: Brian Burnell via Wikimedia Commons

Vice-Admiral Kulakov: the Udaloy-class are specialised anti-submarine destroyers with secondary air defence and anti-ship capabilities. While the destroyer is significantly smaller (163 m and 6,930 tons) and somewhat older (launched 1980) than the cruisers, she still represents a vessel of the same size as the current flagship of the Baltic Fleet, the air defence destroyer Nastoychivyy.

d0a4d180d0b5d0b3d0b0d182_22d090d0b4d0bcd0b8d180d0b0d0bb_d09cd0b0d0bad0b0d180d0bed0b222
Source: Mil.ru via Wikimedia Commons

Admiral Makarov: The odd bird out, Makarov not only comes from Sevastopol instead of Murmansk, she is also one of the few really modern warships of the Russian Navy. While the frigate is the lightest of the kvartet (125 m and 3,300 tons), she packs a considerable punch for her size with moderns sensors and weaponry (including the long-range Kalibr-cruise missile), and also feature some amount of signature reduction.

Notable is that Granit, Bazalt, and Kalibr all can come equipped either with conventional or nuclear warheads.

As noted, the current flagship of the Russian Baltic Fleet is the Sovremennyy-class destroyer Nastoychivyy, which is the sole operational destroyer of any country permanently stationed in the Baltic Sea. In addition, her sister Bespokoynyy is in reserve/long-term storage. It is hard to overstate the boost the four vessels dispatched brought to Russia’s Baltic Fleet, traditionally one of the smaller fleets in the Soviet/Russian Navy. While all except Makarov are starting to show their age, they brought significant increases to the air defences available. Ustinov feature both the medium ranged Osa-MA and the long-range S-300F Fort surface-to-air missile systems, which are naval derivatives of the 9K33 Osa and the S-300. The Fort employs the original semi-active 5V55 missiles, while the Veliky in turn feature the upgrade S-300FM Fort-M system, which is longer ranged and sporting the newer 48N6E and 48N6E2 missiles. The Veliky also has the medium-range 3K95 Kinzhal (a naval derivative of the 9K330 Tor) and the Kashtan close-in weapons systems with autocannons and short-range missiles (easiest described as 2K22 Tunguska derivatives). The Kinzhal is found on the Kulakov as well. Makarov in turn has the Kashtan for short-range work and the Shtil-1, which in essence consists of Buk-M1 missiles in vertical launch tubes, for medium-range work.

In short: that is a serious amount of different air defence systems, and should have been of note for anyone interesting in drawing A2/AD-bubbles on maps.

The open-water anti-submarine capability was also given a considerable increase by Kulakov and Makarov. Up until now, the main sub-hunting force has been the six coastal ASW-corvettes of the Parchim-class, with open water capability largely resting on the shoulders of the fleet’s sole submarine Vyborg (an early Project 877 ‘Kilo’-class sub from the early 80’s) and the four Steregushchiy-class (light) frigates. This is a relatively small force, considering that the Baltic Sea is home to two of the world’s most modern AIP-submarine forces: the Swedish (Gotland– and Södermanland-classes) and the German (Type 212) submarine squadrons.

The escorts

The vessels arrived well in time before the parade, and the small squadron of Donskoy, Veliky, and the tug Nikolay Chiker was followed closely by both defence forces and media. NATO-vessels escorted the vessels throughout their journey, with the Norwegian Coast Guard shadowing them along the Norwegian coast, and then handing over to HDMS Diana and the Royal Danish Navy. The Danish Defence Forces had earlier stated that the passage of the vessels was business as usual, and that they would dispatch an escort. In hindsight it might not have been quite as usual, as the passage under the Great Belt bridge was escorted by no less than three Diana-class patrol vessels and a single standby vessel positioned just south of the bridge.

After this, the Russians got the attention of, well, everyone. The German Elbe-class tender Main followed them for a while, before the Poles showed up with landing craft/minelayer ORP Gniezno. The Swedes then tried to get the price for most creative solution, by having the Naval Reserve’s Hoburg (ex-ASW hunter Krickan of the Ejdern-class) intercept the formation (granted, there was probably a submarine lurking somewhere for more serious intelligence work). The Estonian’s in turn sent the joint flagship of the border guards and the police force, the Kindral Kurvits.

The Finnish reaction, or rather, the fact that there didn’t seem to be one, caused some people to voice opinions about Finlandisation and the Navy sleeping on their stations. While I am usually quick to argue for clear signalling rather than anything resembling Finlandisation (due to the risk of misinterpretation given our history), I do feel that this is uncalled for. On the contrary: it is painstakingly clear that the appearance of the Donskoy in particular was a PR-stunt, and the considerable buzz caused was quite likely an end in itself. The measured Finnish response was in my opinion a balanced way to acknowledge their existence, without giving them undue attention.

It is perfectly possible to maintain watch over surface vessels in the Gulf of Finland without venturing out to sea (especially in peacetime conditions when no one is targeting or jamming your sensors), and this is particularly true for a vessel with the radar cross section of the Velikiy. So the Finnish Navy seems to have decided that the squadron was not interesting enough to receive an escort.

Note however that the Navy did venture out to sea to get picture of the vessels, and not only that: the Finnish vessel has circled around to a position south of the Russian units (I have gotten confirmation that the pictures are taken from a Finnish naval vessel, and aren’t from Estonian sources). In my opinion, this measured response was likely the best one available. The Navy showed that they knew where the Russian units where, and that they weren’t afraid of maneuvering around in their vicinity to get the best pictures, without showing too much attention (easily interpreted as fear in the face of the Russian show of force).

Exit… Stage Left

The vessels again caused something of a buzz when the question was raised how many of them actually had left the Baltic Sea. According to Russian sources, all Northern Fleet vessels had headed North again, but the pictures used to show this were actually Finnish press photos from the Gulf of Finland. Eventually it became clear that Veliky and Donskoy had left (hat tip to Cornucopia?/Lars Wilderäng), and were indeed northbound. The Kulakov, however, was intercepted by Belgian and British forces while heading south, and no one seems to know where the cruiser Ustinov and the frigate Makarov have went (no one who is ready to tell, that is, I fully expect the defence forces of the countries bordering the Baltic Sea to have proper info on the movement of what might be the strongest vessels currently deployed to our pond). As is well known, the Baltic Fleet has received some significant reinforcements from the Black Sea Fleet earlier as well, and while unlikely, a (semi-)permanent deployment here can’t be ruled out.

Naval Air Defence – The Finnish Way

One of the signs of spring in Kokkola is the arrival of a small flotilla of naval vessels to the local port. Seeing the Finnish Navy operating in the northern parts of the Gulf of Bothnia is uncommon, as all three main formations and the Naval Academy are based along the southern shores of the country. What brings the Navy here is the spring edition of IPH, the twice annually held air defence exercise where the Navy join the Army and Air Force in practicing the whole chain of modern ground-based air defences. This starts with creating situational awareness for the air defence network, and ends with the use of appropriate weapons systems engaging the targets. This year, minelayer FNS Uusimaa (‘05’) lead fast-attack crafts FNS Tornio (‘81’) and FNS Hanko (‘82’) into the port of Kokkola on 17 May for approximately a week of intensive exercises.

Uusimaa (3).JPG
FNS Uusimaa (‘05’) at dusk. Source: @JHggblom

Contrary to a number of other navies which operate dedicated air defence ships, air defence isn’t one of the Finnish Navy’s core tasks. Rather, the ability to protect the own vessel and nearby ships is needed to be able to perform other tasks, including escorting merchant shipping but also naval missions such as mining. Currently, the two Hämeenmaa-class minelayers and the four Hamina-class FAC all feature the same Cassidian TRS-3D radar and a VLS-battery of eight Umkhonto-IR (local designation ITO 2004) short-range IR-homing missile. As noted, half of the Navy’s ships with an air defence capability took part in IPH117.

But the air defence mission starts long before the missiles are let loose. The naval vessels, perhaps somewhat surprisingly, play a significant role in peacetime air policing. The TRS-3D are respectable sensors in its own right, and on the vessels they are backed up by other systems and sensors which make the vessels able to make considerable contributions to the Finnish air picture. The Navy maintain alert vessels 24/7 as part of their policing of Finnish maritime areas (as has been demonstrated), and an added benefit is that these are able to contribute sensor data regarding air movements as well. Here, the older Rauma-class and the Border Guard’s flagship VL Turva are also able to lend a hand, as while they aren’t armed with SAM’s, they still sport search radars (TRS-3D in the case of Turva, while the Rauma-class is equipped with the Saab Sea Giraffe 9GA 208, a relatively old iteration of the Giraffe-family).

There are a number of features which make the Navy punch above its paper stats when it comes to contributing to the air defence and air surveillance network. One is the fact that the vessels are further south than any radars found on the mainland. This is especially valuable for any air traffic coming from the direction of the Baltic Sea, where the Navy can be assumed to be the first one to pick up any movements. Another thing is the mobility offered by the platforms, with the ships being able to travel at speed, up to 30 knots (55 km/h) for the Haminas, while constantly emitting. Compared to ground-based radars which need to be lowered for travelling and set up again at their new location, this eliminates the gap in information that takes place when changing position. The other is the high readiness of the Navy compared to the Army’s air defence units. The vessels not only bring their complete sensor package with them. They also bring the command central, battle management tools, and firing units with them. The vessels need to be able to not only fight as part of an integrated air defence network, but they also need to be able to solve any of their missions independently in case communications with higher command suddenly goes down. This means that the vessels are able to not only see what is up in the air, but also to take independent action against any threat at a moment’s notice.

Tornio & Hanko II.JPG
FNS Tornio (‘81’) left and FNS Hamina (‘82’) right. Source: Own picture

Being able to actually shoot down anything naturally requires that they are sailing around with the missiles loaded, something which the Navy does not comment upon. One of the benefits of the VLS is in fact this ambiguity, as an external observer is unable to tell how many weapons are carried (the same is the case with internal carriage on fighters, feel free to ponder upon this as an issue for HX).

From an air defence point of view, the six Umkhonto-equipped vessels are in effect mobile surface-to-air missile batteries with their own search radars (though with a very limited number of missiles), maintained at a high level of readiness and staffed (almost) exclusively by professionals. This makes them well-suited as counters to a Crimea-style coup attempt, where they together with the Air Force would counter airborne movements in the opening stages of a conflict before the ground based batteries have had time to mobilise and set up.

18622116_1054554321344773_5309318298084793824_n.jpg
FNS Uusimaa (‘05’) firing an Umkhonto-IR short-range surface-to-air missile during IPH117. Source: Merivoimat

The introduction of Squadron 2020 will further strengthen the Navy’s role in the joint air defence network. New radars and sensors, and getting access to mounting them higher as a benefit of the larger vessel size, will offer better situational awareness, and while the exact surface-to-air weapon fit is still undecided, it seems highly likely that the missiles will be of a greater number and capability than the current vessels have. What is also often forgotten is that while the overall number of surface combatants will go down from eleven to eight, the number of air defence capable vessels will in fact go up from six to eight.

While the Navy might see air defence as something of a necessary evil, something that one needs to do to be able to perform the core missions, that doesn’t mean it is a mission taken lightly. Compared to mining operations where time is calculated in hours and days, air defence is a question of seconds and minutes. The demanding nature of it means that it needs to be trained properly, and nowhere in Finland is the training environment better than in the Bothnian Gulf during the last weeks of May. The importance placed on the mission is seen by the fact that the Navy dispatched three vessels for a week, vessels which barely have time get back to Pansio for a quick turnaround before heading out to sea again as part of this spring’s main coastal defence exercise, exercise MTH-17 Lyydia.