The New Bug in Town – Versions for Finland

One issue that has been open to much speculation is exactly which version(s) of the Super Hornet will be offered to Finland. The answer was simple, with Bryan Crutchfield explaining that it was up to the customer, and: “As a mainly single-seat air force, I would expect Finland to primarily be interested in F/A-18E.” This lead to the natural follow-up question, why the equally mainly single-seat Royal Danish Air Force was offered only the two-seat F/A-18F, a decision which proved to be something of a decisive issue in the Kampfly-program. “Because they only asked for the two-seater,” Bryan explained. On the question of why, he had no direct answer, but this is yet another strange data point in the already rather murky Danish affair.

CAG bird
The CAG-bird of VFA-103 ‘Jolly Rogers’. The squadron operates two-seat F/A-18F, with a focus on different kinds of ground attack missions where a second crew member comes in handy. For Finland, a small number of F/A-18F would likely be acquired for advanced training, with a secondary fighter/strike tasking. Source: Own picture

More interesting then was that Boeing seemed to assume that Finland would be interested in a number of Growlers as well. In the case of the US Navy, roughly 20% of the Super Hornets bought are of the electronic warfare version, meaning that a potential Finnish mix of Super Hornets could be something along the lines of 40 F/A-18E single-seaters, 12 F/A-18F two-seaters, and 12 EA-18G Growlers, for a combined fleet of 64 fighters. When asked about if the ‘full-spec’ Growler is likely to be released for sale to Finland, Crutchfield was careful not to make any promises, noting that any sale would be a government-to-government deal. However, he went on to say that Finland appears to be a “very trusted” partner in Washington, and pointed to JASSM-deal as an indication that if Finland wants the Growler, there likely wouldn’t be any issues.

The Growler in many ways is an unrivalled platform in the electronic warfare role, being able to not only jam and destroy enemy radars and air-defence systems, but also having a significant capability when it comes to intercepting and jamming enemy communications and signals. The latter has made it a valuable resource in the operations against ISIS, and it is safe to assume that if Finland would acquire a handful of dedicated EW-platforms, it would make us a sought after coalition partner in the kind of low-intensity conflicts we have participated in in Afghanistan and Iraq. The question then is largely about the price of acquiring and operating the Growlers, as well as what kind of a loss having only 40 instead of 52 F/A-18E’s would be in the eyes of the Air Force Command. While the size reduction in ‘true’ fighters is significant, the role of the Growlers as force multipliers might provide a huge enough boost for both the Air Force and, crucially, to the ground forces to warrant this. As said, this is not solely a question of providing SEAD, but also of the Growlers being able to increase the fog of war for the enemy at crucial moments.

“Envelop the enemy in the fog of war, sow confusion while providing time and space for one’s own forces. Jam the adversaries’ radars. Disrupt his communications. Induce indecision; make the enemy question his own equipment and make mistakes.”The mission of the Growler as described by the Growler Industry Team

But even without the Growler, the baseline F/A-18E/F is a highly versatile multirole aircraft. “The most capable combat-proven multi-role aircraft”, as Boeing likes to put it (a statement that will upset the French). In addition to ‘normal’ air-to-air and air-to-ground work, the aircraft is able to handle both the maritime strike (Boeing did feature a scale model of a Harpoon anti-ship missile in their stand) as well as SEAD, two missions discussed at length in the Finnish report at the launch of the HX-project. What makes the SEAD-mission possible is the Integrated Defensive Electronic Countermeasures (IDECM)-package, currently in its Block IV state, coupled with the ‘leakage’ of technology developed for the Growler back into the fighter version of the aircraft.

“Physics matter,” Crutchfield sums up the sensor package, and point towards the large nose of the F/A-18E parked behind us during the interview. The nose hoses the AN/APG-79 AESA radar built by Raytheon, and Crutchfield isn’t shy when talking about the capabilities of the radar, stating that it is ‘generations’ in front of the competition, with rolling upgrades being introduced every two years. It should be remembered that the AN/APG-79 did experience some rather significant teething troubles when first introduced into service, though things seems to have gotten better since. One of the key features of the AESA is that it allows the pilot of the F/A-18F to stay fully focused on the air-to-air picture, while the weapon system operator (WSO) in the aft seat works on the air-to-ground view, with both having access to the radar modes they want.

USS Dwight D. Eisenhower Deployment
A colorful EA-18G Growler of Electronic Attack Squadron 130 (VAQ-130) “Zappers” onboard the USS Dwight D. Eisenhower (CVN-69) in the Arabian Sea. The squadron operated in support of Operation Inherent Resolve, the operations against ISIS. Note the large jammer on the centreline station, the carriage of which is one of the distinguishing features of the Growler compared to the baseline F/A-18F. Source: USN / Seaman Dartez C. Williams via Wikimedia Commons

Like the ‘legacy’ Hornet before it, the Super Hornet is qualified for a large number of weapons, including the most recent versions of the venerable AIM-9 Sidewinder, the AGM-88 HARM, and the AIM-120 AMRAAM (these being the AIM-9X, AGM-88E AARGM, and the AIM-120D respectively). On the horizon the SDB-II and the LRASM looms, while more exotic munitions include the Quickstrike-series of air-dropped mines. Which of these would be of interest to the Finnish Air Force is uncertain, but a continued reliance on ever more advanced versions of the AIM-9/-120 combination would be a natural choice for the immediate future. The big deficit is the lack of the very-long range Meteor ramjet-powered missile, which all other HX-contenders are set to have received prior to HX’s IOC date. The US Navy seems content with traditional rocket-powered air-to-air weapons at the moment, and while Finland naturally could pay for Meteor integration on its own, that would still make be a considerable sum. Going for the Super Hornet could then mean having to get closer to the enemy before firing, as there is a significant difference in the size of the no-escape zones of the throttleable ramjet motor compared to traditional rockets.

The New Bug in Town – Back in the Game

When first starting to cover the HX-program, I held the JAS 39E Gripen and F-35A Lightning II as the favourites, with the F/A-18E/F Super Hornet as the potential black horse. Since that, I have questioned the chances of the ‘Super Bug’, mainly based on two different issues.

The first has been the lack of a major road map or upgrade. The first Advanced Super Hornet-concept was displayed already in 2013 with a company-funded prototype. This was then gradually replaced by less ambitious proposals and talk about integrating only some of the features demonstrated by the Advanced Super Hornet. The US Navy, however, didn’t seem too interested in either the 2013 or the 2016 version of the concepts.

The other has been the seemingly low priority given to the Finnish program by Boeing. Compared to the Danish Kampfly-program where Boeing launched a serious marketing effort (and eventually took the whole thing to court), Boeing has been remarkably absent from the public spotlight in Finland.

Both of these changed last week, with the US Navy ordering the Block III-upgrade to the fleet’s F/A-18E/F Super Hornets and EA-18G Growlers, and Boeing making a high-profile appearance at two Finnish air shows in Helsinki on Friday and Seinäjoki on Saturday and Sunday. Not only did Boeing manage to bring two Super Hornets to Finland, but I also got the opportunity to have a chat with senior manager Bryan Crutchfield to get a better picture of the company’s effort to keep their position as Finland’s supplier of fighter aircraft.

The two fighters brought to Finland were a F/A-18F two-seater and a F/A-18E single-seater. While the single-seater was from the distinguished US Navy squadron VFA-143 Pukin’ Dogs of Vietnam MiG-killer fame, it was the two-seater that really got the heads turning. This was nothing less than the brightly-painted CAG-bird of VFA-103 Jolly Rogers, perhaps the most famous naval fighter aircraft in the world. Getting the opportunity to see both the F/A-18E and the F/A-18F in low-level formation was something many Finnish aviation enthusiasts were happy to experience.

Super Bug Formation
Two Super Hornets in formation over the Gulf of Finland. A rare sight, at least for now. Source: Own picture

Back on the ground, the F/A-18E spent Saturday as a Boeing demonstrator with temporary markings and mock-up conformal fuel tanks, before reverting back to a Block II F/A-18E for Sunday, and continuing on to Pirkkala AFB (Tampere) where they spent the early part of the week offering the Air Force an opportunity to study the aircraft closer. Pirkkala is home to Satakunta Air Command, responsible for the development of tactics and air doctrines as well as handling flight testing and playing a “pivotal role in the development and fielding of new systems”. This is something of a marketing victory for Boeing, as they are the first to offer the Air Force this kind of a chance to get to explore the aircraft on their home turf and according to their own wishes, guided by the company’s own test pilots.

While the Block III might be toned down when it comes to RCS reduction compared to the original Advanced Super Hornet, this is a calculated decision by Boeing. “The Super Hornet Block I reached initial operational capability back in 2001, when stealth was the hot stuff”, Bryan Crutchfield explains. “This means that the aircraft is designed with stealth features, but so are all the other contenders, so that’s nothing special.” Instead, Boeing likes to focus their energy on other measures, such as jamming. According to their view, jamming provides a flexibility that stealth does not, i.e. you are not restricted to a certain waveband, while at the same time avoiding compromises when it comes to aerodynamics and space restrictions. This means that while stealth might hold significant benefits today, the question whether it will in 2050 is far more uncertain given the current development of sensors with the specific goal of countering X-band stealth.

The US Navy also seems to be happy with this dual-pronged approach, as there are currently no plans to let the F-35 replace the Super Hornet. Instead, the two will keep operating side-by-side into the foreseeable future, with the F-35C replacing the ‘legacy’ F/A-18A through D Hornets currently sharing the carrier decks with the Super Hornet. Exactly how long this will last is anyone’s guess, as the US Navy only forecasts around 25 years into the future (contrary to many other air arms), and there’s currently no retirement date set. Boeing, however, expects the Super Hornet to continue in US Navy service to around 2060, in line with (and then some) the plans for HX. In part this is based on a forecasted need for 100+ new Super Hornets being bought by the Navy within then next five years, with these being expected to serve their full lifespan.

What does Block III then hold? The biggest external change is the conformal fuel tanks, which provide added fuel capacity at a lower drag and RCS compared to traditional external fuel tanks, and without occupying hardpoints that could be used for weapons or other pods. However, as is usually the case with these kinds of upgrades, the main changes are on the inside. One major improvement is the increase in bandwidth when transmitting and receiving data to and from other aircraft. This has become an increasingly important issue, as more and more sensor data and imagery are being transmitted between not only fighters, but other friendly units and installations as well.

Block 3.JPG
The Pukin’ Dogs F/A-18E Super Hornet as a makeshift Block III demonstrator, sporting mock-up conformal fuel tanks. Source: Own picture

Another important upgrade is the fitting of an IRST. IR-sensors are nothing new to US Navy fighters, having featured them on a number of occasions throughout history. However, it is only now they really start to come into their own as mature sensor systems. Part of this is because the sensors themselves have matured, but a part also comes from sensor fusion making it easier for the pilot to take in data not coming from the aircraft’s primary sensor.

And speaking of taking in data, a huge improvement is the new large area display replacing the earlier smaller multi-function displays. The display not only means more surface area on which to show information to the pilot, but also makes a higher degree of customisation possible, based on either individual preferences or the type of mission currently being flown. It is as an example possible to now have both the air-to-air and air-to-ground pictures up on the screen at the same time, thanks to the AN/APG-79 AESA radar and the huge screen area available.

The customisation also makes changes to the human-machine interface quicker, a key focus as the increasing number of sensors and data received from other platforms puts ever increasing demands on the pilots to be able to process large amounts of information. Boeing described how they run simulator tests with a group of around sixty active pilots who came in and tested an upcoming update. After having gathered their feedback, Boeing sent them out for lunch, and the software engineers started to make quick changes which allowed for a second run of testing by the same pilots the very same afternoon. Adaptability is the name of Boeing’s game, and they are increasingly moving away from bigger occasional updates to regular smaller ones.

The Future Finnish Air Force, Pt.2: Two Fighters for the Air Force?

The HX-project is often treated as a stand-alone program to replace the gap left by the upcoming retirement of Finland’s legacy F/A-18C/D Hornets. However, recent developments have opened up the field for a complete remake of the Finnish Air Force, something which, while unlikely, deserves a closer look. To capture the larger picture, this is the second post of a short series. Expect the next post within the coming days.

In the end, it probably comes down to money. As a number of countries have realized, fighters are getting more expensive all the time. Lockheed-Martin is still claiming that their F-35 will be no more expensive than the current fighters (presumable compared to the same company’s F-16), while Saab is also maintaining that the 39E will be cheaper to buy and operate than the older 39C. Still, several countries have been unable, or unwilling, to replace their current fleets on a 1:1 basis. Examples include Sweden going from around 100 39C/D’s to 60 (possibly 70) 39E’s, and the Netherlands going from 68 (out of the original 213) F-16’s to 37 F-35’s (planned, not ordered).

For the Finnish Air Force, this is not a route they would like to take. The preliminary report was clear about the fact that the size of the current Hornet-fleet is based on economics and not on operational demands, and is in fact too small. That the air force would be able to buy more than 64 HX-fighters is unlikely, but they just might be able to convince the political leadership that they have to replace the fighters on a 1:1 basis. Jäämeri noted that the RFI will probably include “a number of differently sized packages”, showing that the final number of airframes is yet to be set.

F-16 and crew chief
Danish F-16BM, one of a total of 77 F-16A/B bought by Denmark, to be replaced by 30 fighters in a ongoing procurement program. Source: Author.

This is where the two-fighter solution might come in. If the fighter of choice proves to be prohibitively expensive, let’s say that the F-35 is declared the winner of the HX-evaluation, but only 48 instead of 64 F-35‘s fit inside the given budget, what will the air force do? Buy a too small number of fighters? Buy the second best thing? Or, will the air force buy 24 F-35’s, coupled with 48 additional fighters of a cheaper design, either one of the other primary HX-candidates, or a modernized 4th generation fighter, such as the F-16V Block 60+?

Obviously, some mixes feel more natural than others. Beefing up a JAS 39E (Super) Gripen force with a squadron or two of JAS 39C Gripen would be a relatively (keyword) simple task from a maintenance point of view, especially as a number of subsystems developed for the 39E probably would be retrofitted to the 39C. This would also offer the benefit of making the 39D available for type familiarization. Another possibility is that Finland would buy only 39D’s and no C’s to supplement the 39E, with trained backseaters (WSO/RIO) for strike missions. However, it should be noted that the commonality between the baseline 39C/D and the 39E is far smaller than a quick look at the aircrafts would have you believe, with the 39E more or less a new aircraft, being bigger, heavier, and with a stronger engine.The most straightforward mix is the F/A-18E/F Super Hornet (E being the single-seater and F the two-seater) and the EA-18G Growler, the latter being a specialized development of the F/A-18F, tailored for electronic warfare missions (jamming enemy sensors and communications, intercepting enemy signals for intelligence purposes, neutralizing or destroying enemy air defences). As has been discussed on the blog, these capabilities are highly valued during international operations, and would provide Finland with a capability that only a handful of western countries have (USA, Germany, Italy, and Australia). Buying a Growler squadron to support a Super Hornet fleet, however, will not lead to any savings compared to an equally sized “pure” Super Hornet fleet, but rather provide more capability for an added cost.

An interesting detail here is the fact that the JAS 39E Gripen and the super Hornet/Growler feature the same engine, the General-Electric F414-GE, in the F414-GE-400 and F414-GE-39E versions respectively. The latter version differs mainly in a few modifications made to ensure safe operations of the engine in a single-engined airframe, as opposed to the twin-engined Super Hornet. A mixed fleet of Gripens and Super Hornet would be an extremely interesting concept, with the two aircrafts complementing each other well. However, it is most likely a solution that is far too costly for Finland.

The HX-project Preliminary Report, pt. 2: Capabilities and Fighters

This is part two of my look into the preliminary report on the HX-project, which is aimed at finding a suitable replacement for the F/A-18C Hornet in Finnish service. This part will focus on the interesting stuff: the capabilities to be replaced, and the alternatives that might replace them.

The Capabilities

The capabilities the Hornet provides are, according to the report, as follows:

  • Airspace surveillance and control
  • Defensive counter-air (DCA)
  • Offensive counter-air (OCA)
  • Interdiction strikes
  • Battlefield air interdiction (BAI)
  • Maritime strike
  • Intelligence, surveillance, target acquisition, and reconnaissance (ISTAR)

Of note is here is that when the Hornets were introduced in Finnish service, it was as a pure interceptor/fighter aircraft, and only later (with MLU 2) did the potential for interdiction strikes start to feature prominently. In fact, it can be argued that out of the seven roles described above, the current Finnish Hornet-fleet is oriented towards three (airspace surveillance and control, DCA, and interdiction strike), is capable of handling two somewhat satisfactorily (BAI and ISTAR), with two being more or less outside of the current scope of capabilities (OCA and maritime strike). It is not that the Hornet can’t perform maritime strike and OCA-missions, but rather that a combination of lack of suitable weapons and a focusing in training on other missions leaves gaps to be filled (note: this is based on how air force training is described in open sources, it is possible that e.g. OCA receives more attention than is openly acknowledged).

20150606_155813
Scale model of JAS 39E Gripen as displayed by SAAB at Turku Airshow this spring. The weapons and sensors shown on the model would make the aircraft capable of all missions listed, and are, from the wingtip inwards: IRIS-T short-range air-to-air missile, Meteor long-range air-to-air missile, RBS15F long-range anti-ship missile (with secondary ground-attack capability), GBU-39 Small Diameter Bomb precision-guided glide bombs, and an electro-optical sensor/recce-pod. Source: Author

Of interest is especially the focus placed on OCA, which is discussed over multiple pages in the report from chapter 4 and onwards. The reasoning behind this is that air superiority can seldom be achieved through DCA only (i.e. shooting down enemy aircraft entering our air space), but instead this needs to be supplemented with OCA (attacking enemy aircrafts and airbases in their own territory). Traditionally, OCA has meant striking enemy airfields through the use of multiple supporting formations of aircraft (escorts, electronic warfare aircraft supressing enemy air defences, strike packages for taking out enemy runways and hangars, and finally an aircraft doing battle damage assessment by photographing the target after the strike), and as such these kinds of strikes are both high-risk and require specialised weapons and a high level of pilot competence. The number of aircraft involved would also mean that a significant proportion of the whole Finnish air force would be tied up in a single mission.

The increasing capabilities of modern multi-role fighters and the use of stand-off weapons and sensors mean that the absolute number of aircrafts used for an OCA strike can be decreased somewhat. However, I must still admit that I was surprised that this seems to be a prioritised field. It is possible that this is seen as the most demanding of the missions, and that if the air force pilots becomes proficient in multi-package strikes on enemy airbases, this skill set (and weaponry) can easily be used also for the “lesser” missions (such as striking strategic bridges or enemy surface units, neither mission of which is dealt with in any detail in the report).

Another mission that gets a thorough analysis is electronic warfare and especially suppression of enemy air defences. SEAD, as it is usually abbreviated, deals with rendering enemy groundbased air defence systems ineffective, either by jamming their sensors or by outright destroying them. This is usually performed by specially modified aircrafts (the EA-6B Prowler and EA-18G Growler of the US Navy and Marine Corps, as well as the German and Italian Air Force Tornado ECR being mentioned), carrying special sensors and weaponry. The report notes that, even when it comes to stealth aircraft, multirole fighters will remain vulnerable to enemy air defences, and while they can carry some SEAD-weaponry and sensors (such as radar-homing missiles and jamming pods), true SEAD will always be something of a niche-capability that even modern multi-role fighters can only perform “with some restrictions”.

A Rafale M of the French Navy’s Squadron 11F launches from the flight deck of the US aircraft carrier USS Carl Vinson (CVN 70). During strike operations in Iraq and Syria (this missions was a training flight, hence the lack of weapons). The M model has a strengthened airframe, larger tailhook, and a built-in boarding ladder, all of which would come in handy during road basing. Source: US Navy/Specialist 2nd Class John Philip Wagner, Jr

The possibility that Russia through the use of modern long-range air defence systems could more or less close Finnish air space is not discussed in the report. This would naturally have a huge impact on the needs and priorities of any future fighter, so not discussing it means that the work group believes that:

  1. A) The impact of long-range surface-to-air missiles will be small/manageable (at extreme ranges the system will have trouble engaging low-flying targets due to the radar not seeing over the horizon, and the large missiles needed to get enough range will have poor manoeuvrability against agile fighter-sized targets), or
  2. B) While it is possible to shut down most of Finland’s airspace using long-range surface-to-air missiles, it is not a good idea for Finnish officials to openly admit it.

The Alternative Solutions

A number of alternative solutions have been put forward, including unmanned platforms (UAV/UCAV), a completely ground-based solution (see earlier blog post), as well as extending the lifespan of the current Hornet-fleet.

All three of these are dealt with thoroughly in the report. There are currently no UAV/UCAV capable of performing the same missions as manned multi-role aircraft, especially with regards to air-to-air missions. Also, unmanned platforms tend to have the same cost to operate as manned aircraft of similar complexity and size (due to the fact that they need the same maintenance as an ordinary plane, and while he/she isn’t on board, they also need a trained “pilot”). The report envisions a place for UAV/UCAV’s in supplementing roles, e.g. reconnaissance, performing dangerous strikes, and finding targets on the battlefield and guiding in manned aircraft to strike these (FAC).

BAE Taranis is at the cutting edge of UCAV technology, but is still far from operational, and nowhere ear as versatile as modern multirole fighters. Source: BAE Systems

A ground-based air defence system lacks the operational flexibility of fighters, and cannot rapidly regroup to answer sudden threats in a new area of the country. Due to the vast size of Finland, a complete air defence system would also be extremely costly, and other weapon systems would be needed for striking enemy ground- and naval targets. Peacetime air surveillance is also impossible without own aircraft.

Lengthening the lifespan of the current Hornets is not a realistic option either. The aircrafts would need to be completely overhauled, an expensive process which easily could become even more expensive if some “nasty surprises”, such as cracks in critical structures, were found during the program. After 2020, Finland would also be the sole user responsible for keeping the legacy-Hornets aging mission computer up to date, carrying the whole upgrade cost for the fighter’s core avionics. The relative combat value of the aircraft, especially in air-to-air missions, is also rapidly decreasing with the introduction of new fighter aircraft in our neighbouring countries (F-35A, JAS 39E, T-50, and the latest versions of the Su-27 and MiG-29 families). If the extension would be done, it would cost approximately 1.2 billion Euros, and give the Hornet 5-10 years more in service. This would not give us any more options with regards to eventually replacing it, as no new designs are on the horizon in that timeframe, but rather it would diminish the options, as certain production lines are on the verge of closing.

The Candidates

The candidates have been an open secret, but as far as I am aware of, this is the first time they have been named in an official document. They are the Boeing F/A-18E/F Super Hornet, Dassault Rafale, Eurofighter Typhoon, Lockheed-Martin F-35, and the SAAB JAS 39E (Super) Gripen, while all Far Eastern aircrafts are out of the competition. I presented all of the contenders in depth last autumn (here and here), so here I will only look into the few notable changes that have taken place since, as well as their strong and weak points in the light of the report.

Prior to Paris Air Show this month, Boeing declared that they believe they will be able to keep their St Louis production line for the F/A-18E/F Super Hornet open until the end of the decade, meaning that they will be in the running for HX after all. Part of this is due to a new export deal for 28 Super Hornets to Kuwait, worth an estimated 3 billion USD. This marks only the second export deal for the Super Hornet, but Boeing is still looking into a number of potential foreign customers, Finland being one of them. An interesting ace the Super Hornet has is the ability to offer a dedicated SEAD version in the form of the EA-18G Growler, a heavily modified F/A-18F. The main problem is that the project is heavily reliant on continued interest (and funding) from a single operator. The day the US Navy decides to prioritise other aircraft, the few exported Super Hornets will become very expensive to maintain and upgrade.

A US Navy Boeing EA-18G Growler from Electronic Attack Squadron VAQ-141 “Shadowhawks” landing on the flight deck of the aircraft carrier USS George Washington (CVN-73). The aircraft is loaded with jamming pods for jamming enemy radars/air defences and external fuel tanks for longer range/loitering times. The standard F/A-18F Super Hornet is externally very similiar. Source: U.S. Navy/Specialist 3rd Class Ricardo R. Guzman

The interest in SEAD might prove beneficial to the F/A-18E/F, if Finland would opt for an arrangement similar to Australia, who operate a fleet of 24 F/A-18F Super Hornets and have 12 EA-18G Growlers on order. Operating dedicated SEAD aircraft would make Finland a highly sought after partner in international operations, with only a handful of countries being able to offer the same capability (Germany, Italy, and USA), of which only the USA are able to offer more than a handful of airframes. Boeing also has the benefit of being the main supplier for the current F/A-18 Hornet-fleet, which have been a highly successful project from a Finnish point of view. The report talks about “looking into the possibilities of benefitting from current strategic partnerships that exists between Finnish and foreign companies”, and letting Patria and Boeing continue with their collaboration from the Hornet on to the Super Hornet would seem to fit this bill perfectly. The Super Hornet is also developed for the harsh carrier environment, and could be used for dispersed basing (i.e. using purpose-built roads as airfields) in the same way as the current legacy-Hornets are used.

Dassault Rafale has also scored notable successes on the export market, in the form of a 6.3 billion Euro deal for 24 Rafales to Qatar and a similar number of aircraft to Egypt as part of larger arms package including weaponry and warships. The troublesome MRCA deal with India also seems to be moving ahead. All in all, it seems more likely now than it did half a year ago that Dassault could manage to keep the production lines of its beautiful fighter open long enough to take part in the HX-project. Still, it’s hard to say how serious Dassault is about the Finnish fighter program, seemingly being occupied in the Middle East and with the huge Indian deal. Rafale is available in both land-based and carrier versions.

Eurofighter, SAAB, and Lockheed-Martin have not been able to present much new. All programs are moving forward at a steady pace. Interestingly enough, all three were also present at this summer’s main flight show in Finland, Turku Airshow, held earlier this month. SAAB had a JAS 39C Gripen taking part in a flyby with a Finnish F/A-18C Hornet and a Royal Norwegian Air Force F-16AM, as well as performing a solo display. The other two didn’t bring any flying hardware. Neither Boeing nor Dassault took part in the air show in any way.

A Royal Air Force Typhoon takes off for Libya during the intervention of 2011 (Operation Ellamy). The aircraft carries four of the 1000 lb (450 kg) Enhanced Paveway II bombs, which can be guided via the centreline mounted Litening III targeting pod. ASRAAM short-range air-to-air missiles are carried for self-defence. Source: Sgt Pete Mobbs/MOD

Whit regards to the strategic partnerships, it should be noted that while Finland haven’t bought a British fighter since the Folland Gnat in 1958 or a German one since the Messerschmitt Bf 109G, the strategic partnerships are certainly there. The companies behind the Eurofighter consortium (officialy Eurofighter Jagdflugzeug GmbH) constitutes some of the key suppliers of the Finnish Defence Forces, through the CASA C-295 transports (by Airbus Defence) and the BAE Hawk trainers (by BAE Systems) of the Finnish Air Force, as well as in the form of the army’s primary transport helicopter, the NHIndustries NH90 (produced by the NHIndustries consortium, in which Airbus Helicopters has a 62.5 % stake). Patria is also supplying parts for a number of Airbus’ civil projects. All in all, the Eurofighter certainly has the local connections to be a serious contender. However, Eurofighter have had a hard time finding exports outside of the original countries, and I personally see the aircraft as the least likely choice for the HX-project. It’s not that it isn’t capable; it just costs too much and doesn’t quite stand out in an extremely competitive crowd.

SAAB seems to be the company that is placing most effort on the HX-project, although the Brazilian order certainly promises to be of an altogether different scale. Gripen is developed from the outset to suit Swedish needs, which are strikingly similar to Finland’s (cold weather operations, ease of maintenance, dispersed basing, and so forth). The Brazilian order and continued Swedish commitment also promises to make certain that the aircraft will have support throughout the lifecycle of the HX. The one stumbling block is its lack of stealth.

Contrary to SAAB, Lockheed-Martin does offer stealth, but there are huge questionmarks with regards to how maintenance of the F-35 will be handled. Cost is also an issue, even if the manufacturer assures everyone that the series produced aircraft will be on par or lower in unit price compared to current generation 4+-fighters. Still, when it comes to life-cycle costs, stealth coatings are notoriously difficult and expensive to maintain in proper working condition. The F-35 is offered in three versions, where the C-version is developed for carrierborne use, and as such could be used for dispersed basing. It is, however, noticeably more expensive than the landbased A-version, and it is questionable if it ever will receive any export orders. Of note is that the F-35 is only offered in single-seat versions, but the report acknowledges that much of the initial training will move to simulators, which lessens the demand for a two-seat lead-in training version.

Tour de Sky 2014 1080
Lockheed-Martin showing of a F-35 simulator to future fighter pilots at last years Tour de Sky airshow in Oulu. Source: Author

The Bottom Line

I would still rank the F-35A/C and the JAS 39E Gripen as the two most likely candidates, with the F/A-18E/F (possibly with a few Growlers on strength) as the black horse. What it will come down to is:

  • What impact can new stealth-cancelling technologies be assumed to offer?
  • How is the F-35 able to cope with demanding cold-weather operations in dispersed conditions?
  • How will a robust maintenance chain be assured (especially in the case of the F-35)?
  • Is dedicated SEAD capability of importance?
  • What will the life-cycle costs of the different aircraft be?