F-35A is HX – The Winner Takes It All

Back in 2017 I was fortunate enough to travel to RAF Lossiemouth together with a bunch of Finnish media courtesy of BAE Systems to get up and close with the Eurofighter Typhoon group operating there. When discussing the fact that the RAF was acquiring both the Typhoon and the F-35, Wing Commander Billy Cooper, then-CO of the 6 Squadron, said something that puzzled me.

You need stealth to be able to go forward

It seemed the Wing Commander didn’t understand which aircraft he was supposed to be selling.

Her Majesty the Queen being briefed on the other fighter the Royal Air Force (and the Royal Navy) is getting – the stealthy F-35 that is “able to go forward”. This here is the Aircraft Systems Maintenance Trainer in the Integrated Training Centre at RAF Marham. Source: RAF Marham Twitter / Cpl Wise

After what has been described as perhaps the most fair and transparent fighter acquisition program this side of the Cold War – one that resulted in an unprecedented five serious best and final offers – we finally have a winner, and it certainly was a case of a favourite that held. The F-35A was always the one to beat, and while Finland looked like it could be the place where it would be possible to do so (my personal opinion was that the Super Hornet/Growler-combination was the  most likely), it turned out that it was not to be here (either). The much-maligned stealth fighter instead took a rather resounding win in being chosen as the next fighter for the Finnish Air Force. With the FDF traditionally having been known to err on the side of conservative rather than the revolutionary, it certainly adds to the credibility of the claim that the aircraft is maturing nicely.

The strong points of the F-35 are at the same time well-known, but also often somewhat misunderstood (in particular in a Finnish situation). Yes, the aircraft is stealthy, and as Cooper noted that is indeed a big benefit, but it is far from a one-trick-pony. To start with perhaps the most boring factor, simply the sheer amount of F-35s sold is a huge benefit. As has been stressed from the outset, Finland can’t afford to be the sole operator of an aircraft (or even the sole operator of a particular configuration), something which the Hornet MLU-programs have taught the service. The F-35 will be around in numbers in 2060, and there will be users who will be as reliant as Finland on keeping the aircraft up to date. Yes, aircraft spotters will cry a bit as yet another air force convert to the same single-type force, but in the real world that does benefit the operators.

F-35As out of Eieleson AFB in Alaska practised dispersed operations in Guam, including at the abandoned Northwest Field, during exercise Cope North 21 in February this year. Source: DVIDS/Senior Airman Jonathan Valdes

Speaking of which, much of the hesitation about the F-35 has been surrounding how it is from the outset is conceptualised to benefit from being the NATO-standard, with concentrated maintenance and spares supplies. However, in what is a major win for the team behind HX, Lockheed Martin provided a unique tailored solution to Finland – one described in their BAFO-press statement to “includes many opportunities for the Finnish defense industry related to the direct manufacture and maintenance of the F-35 that have not been offered before.” This is in line also with the earlier talking points of Lockheed Martin throughout the past few years, which has focused on the fact that maintenance solutions and spares packages indeed can be altered to meet the needs of the Finnish Air Force (one might also note that Israel had no issue securing far-reaching rights to do stuff themselves, showing that while they arguably are a special case, the rules of the F-35 game aren’t as set as some would like to make them out to be). But while it has been reported earlier that Finland received a “firm commitment” for a number of components and sub-assemblies for not just the Finnish F-35s but for the global fleet as well (itself something significantly more far-reaching than most other countries), today’s presser included information that included a firm commitment that 400 forward fuselage will be assembled in Finland! It’s hard to stress how much of a different league this is compared to e.g. the Danish agreement (and how happy this makes me as a taxpayer).

This is obviously part of building the security of supply. The principle is simple: Finland is to be able to keep the aircraft up in the air even if the borders are shut. To ensure that Finland will have an indigenous maintenance and repair capability for over 100 components (including parts of the fuselage and engine), which is based on the items covered by the industrial cooperation agreement. There will also be significant stockpiles of components that aren’t on the list of items which Finland can repair and overhaul organically (often parts with very long mean time between failures, and for which it aren’t economical to build up an independent repair capability). Notable is also that the Finnish organic repair capability is not just for domestic use, but is also part of the GSS (the global support solution) meaning that they will be used to maintain parts for the global spares pool.

The package is unprecedented, with Lockheed Martin describing it as including opportunities that haven’t been offered to any other country. Company representatives also acknowledged that the road hadn’t been easy.

There were some tense moments.

Their Finnish counterparts had apparently been “very Finnish and upfront with us about where we weren’t meeting their expectations”. It is also evident from both the Finnish authorities and Lockheed Martin that the negotiations have been both tough and thorough, and lead to a significantly better final bid than would have been possible with a more straightforward process. An interesting note in the documentation is that the industrial participation comes with a direct 116 MEUR price-tag, which frankly feels like steal for the capability offered.

The F-35 is no stranger to the cold, having seen service in the high north on both sides of the Atlantic. Picture courtesy of Lockheed Martin

The weapons package is at the same time comprehensive and straightforward. The first package which will be signed off at the same time as the fighter contract is for AIM-120C-8 AMRAAMs and AIM-9X Sidewinders. Further down the road the package will most likely include JSM in the joint air-to-ground and anti-ship roles, as well as the AGM-158 JASSM-ER heavy cruise missile, GBU-54 and GBU-56 LJDAM laser-/GPS-guided bombs in the 250 and 1,000 kg class, as well as the GBU-39 SDB and GBU-53/B StormBreaker SDB II small-diameter bombs. Notable is that this will bring serious new capabilities to the Finnish Air Force, such as the ability to hit moving and mobile targets, on land and at sea. The procurement will be staggered to ensure that there won’t be a single huge batch of weapons becoming obsolescent at the same time, and to ensure that developments with new versions of existing weapons or even completely new munitions are kept up with (no-one is officially mentioning the AIM-260 JATM, but we all know it is coming). That the air-to-air missiles will be first comes naturally as the current Hornet-fleet is expected to be viable in the air-to-ground role longer than it will be in the air-to-air role. As such, during the period of transition the plan is that the F-35A is to be able to focus on the fighter role, with the ability to escort the Hornets focusing on the ground-pounding if the need arises. The total arms package is for approximately 1.58 Bn EUR, of which 754.6 MEUR is for the air-to-air missiles to be acquired in the first step, and 823.8 MEUR for later procurement (up to 2030) and which also will provide funding to the reserve in case parts of the contract will have to be renegotiated/or in case there will be technical risks. Notable is that the large number of weapons included had a positive effect on the evaluation.

Money, Money, Money…

Which brings us to what has been the most controversial aspect of the program: cost.

The acquisition cost has come down nicely, and the current contract gives a unit cost of 73.49 MEUR per aircraft for the Finnish aircraft. More controversial is the annual operating costs, and with impeccable timing I last week noted that both the Norwegian and Swiss life-cycle costs were significantly over the Finnish ones, 77.5% and 30% respectively if extrapolated out to 64. Extrapolating never works, but the difference was large enough that I wanted an explanation. Especially as the Finnish number is 37% below the current US annual cost per aircraft (though it actually lines up rather nicely with the stated US target). Luckily, brigadier general Keränen, Deputy Chief of Staff Air Force Operations, was happy to open up the calculations.

The obvious issue is that it never is an apples versus apples comparison. Switzerland famously include VAT in their costings, something that the FDF avoids. The Swiss also present indexed average costs adjusted for inflation, while the Finnish figure is given in 2021 Euros. The USAF also include a number of basing costs in their figures (and notable is that a USAF base include quite a bit more than a Finnish air force base). But Finland is also paradoxically assisted by jumping aboard the train at a relatively late stage, as the US don’t charge for non-recurring costs, and the partner nations – although they get a share of the license cost when fighters are sold abroad – have obviously invested significant sums throughout the program which now show up in their LCC. But there are a number of other key issues as well. Finland will fly approximately 9,000 hours annually, which is in line with the current Hornet flight hours. However, with the relative large number of aircraft that actually mean that the Finnish fleet flies 140 flight hours per aircraft annually – approximately half of what the USAF does. This naturally create less wear and lower maintenance cost per aircraft and year. Notable is also that the 2 Bn EUR in upgrades are placed outside of the 254 MEUR annual operating costs, a relic from the Hornet-era where upgrades were major MLU-style projects. Another key difference between Finnish and many other European air forces is that Finland plan to shift training from the US back to Finland at a relatively early stage – following their good experiences with the current (cost-effective) proptrainer – Hawk – Hornet pipeline. Keeping pilots at home instead of paying for them living abroad usually turns out to be cheaper (have you seen the real estate prices in Rovaniemi lately?), and we haven’t even mentioned the conscript mechanics. At the end of the day, all bids had roughly similar annual operating costs.

Side note: Yes, that means that no Finnish fighters will stay in the US.

The explanations sounds reasonable enough to me, but even more convincing are two other factors. To begin with, the Finnish Defence Forces is small enough that there isn’t much room for infighting and the Air Force can’t afford to start eating the budget of the other services. And while you might argue that I am naive on that point, even more crucially both external audits and calculations made by the MoD has shown nothing out of the ordinary.

The Norwegian experience of operating F-35A in the far north without doubt has played a similar role to the Canadian CF-18 Hornet operations last time around – providing a serious export reference from snowy fields. Source: Luftforsvaret Twitter

All of the major rumoured causes for the cheap operating costs – cutting any of the bases or cutting the flight hours – are thus out of the question.

All bases, both main bases, other air force bases, alternative civilian fields, and road bases, remain in use. The F-35A has no major issues with operating from the current Finnish network. The key detail that is setting the limit is the safety margins required for an aborted take-off. The old ‘hot’ MiG-21 and J 35 Draken have flown from all, including roads, earlier, and while the F-35A (like any modern fighter) is easier when it comes to the ‘flying’ part, it is also quite a bit heavier at maximum take-off weight. To ensure braking in poor conditions, the Finnish aircraft will be fitted with the ‘Norwegian’ braking chute. As such, the whole current base network will continue in service. The upgrades to infrastructure is broken down in further detail in the official documents, with 409 MEUR for buildings and 75 MEUR for upgrades to the C3I-systems. These include the (in)famous upgrades to cybersecurity in line with the US requirements.

There will however indeed be a serious upgrade to the number of simulators, but not to replace flight hours but to increase the number of simulator training opportunities.

A notable detail is that several of the speakers took time to praise the other offers and note the importance of the countries that provided them as ranking among Finland’s most important allies and partners, a notion that was echoed in the official Swedish MoD press release that in no uncertain terms stated that Finland remain the kingdom’s closest partner, and that the defence cooperation is based on shared values and strategic interests rather than on common arms deals. I will admit that I was happy to hear that, as there always is a risk of backlash in these kinds of situations.

When all is said and done

Having passed the gate checks – something that the Eurofighter Typhoon and Dassault Rafale proved unable to do – the F-35A then went on to beat both the Super Hornet/Growler and Gripen/GlobalEye offers in both the combat evaluation and when it comes to the future development potential. The aircraft will be delivered in ‘Block 4 standard’, though the iterative development path of modern aircraft means that things seldom are that simple. What Block 4 mean in this case is that the first Finnish fighters – coming out of Lot 17 in 2025 – will have the TR3 hardware upgrades that are associated with the Block 4 (including the sidekick upgrade that allow for six AMRAAMs in internal carriage) and what Lockheed Martin describes as the “vast majority” of the software upgrades. The final upgrades will come with Lot 18. The exact engine in use by then is unclear, though looking at the timeline it certainly looks like an uprated F135 might be an option.

The evaluation focused on a major war scenario, in which the air to air role was the focus (30%), with 10% weight being allocated to supporting the Finnish Navy (I can happily report that it indeed was a naval officer who was involved in this part of the evaluation), and 20% each to supporting the Army, long-range fires, and ISR. The F-35A ranked first or joint-first in all mission sets.

At the end of the day, the F-35 has beaten some of the toughest competition, including the bureaucracy and inertia, to come out on top. Following the string of victories it has scored throughout Europe and other parts of the world, there seems little doubt that it indeed is the premier fighter for years to come. As such, it certainly is nice to know that it will also be the aircraft protecting Finnish skies, and it is easy to agree with the official line that the procurement shows that Finland is serious about national defence and now is able to increase the threshold of a potential war.

Wargames

A recent discussion on Twitter caught my eye. In short, fellow blogger ‘IsoT’ had made a scenario in Command: Modern Operations where he ran HX-contenders in strike missions against Russian targets. What raised eyebrows was that a combined Super Hornet/Growler-force had little issues with cleaning out enemy aircraft, they struggled in the face of the Russian IADS. Perhaps most surprisingly, the suppression reportedly worked rather well, but few kills against enemy radars/other GBAD-systems were scored. This peeked my interest, and I got intrigued enough to start doing my own wargaming. But let’s start from the beginning.

What is Command: Modern Operations?

Command: Modern Operations (CMO) is the follow-on to the older Command: Modern Air/Naval Operations (COMANO), itself the spiritual successor to the old Harpoon-series. The basic version is based on open sources and meant largely for entertainment purposes (though granted you need a bit of an unconventional definition of “entertainment” to enjoy it, but I figure most of my readers will fit that description). There is also a professional edition, which sport an impressive list of references (including, ironically enough, both Boeing and Lockheed Martin, as well as a number of services). CMO is widely billed as the best simulator available to the general public for this kind of scenarios, though obviously it being based on open information will lead to a certain amount of guesswork when it comes to the most classified capabilities (such as stealth and EW). As such, while you shouldn’t treat the results as gospel, it does provide some interesting pointers.

Note that there for all aircraft are some omissions/less than ideal loadouts in the database for the rather particular Finnish case. These will have an effect on the outcome. I also generally prefer to create the missions and then let the AI play them out instead of directing individual aircraft and shots. With that said, I have not played the scenarios completely hands-off, but have intervened a few times when e.g. the automated waypoints are placed straight on top of known enemy air defence sites.

So what’s the situation?

For my scenario I imagine us being a bit into a conflict taking place roughly in 2031, with Russian forces advancing on the Vyborg-Hamina and Vyborg-Lappeenranta routes, as well as holding force being located in Niirala/Värtsilä. At this stage the Finnish Air Force decides that cutting a bunch of bridges in the enemy’s rear will slow things down for the aggressor, and as such a coordinated strike is mounted.

The Russian forces are made up of fighters, IADS, Army air defence units, as well as small surface action group operating between Gogland and St Petersburg. In the interest of keeping things manageable and staying with the large coordinated strike-theme I decided to not model enemy air strikes which could be presumed to take place at the same time. As such, no Russian air-to-ground aircraft or helicopters are included in the scenario, and a number of Finnish fighters are deducted to represent fighters on stand-by for other missions (such as defensive counter air).

So how many fighters do Finland have free for this mission? A very rough calculation starts with 64 HX fighters, of which say 12 are unavailable due to maintenance, another 12 shot-down, destroyed, or damaged so that they are unavailable, and 12 being used for other missions. That leaves 28 available for what would be the main offensive air operation, which does sound like a number that is in the right neighbourhood. You can argue it up or down, but in the end that is largely a question of details. As this is the Finnish Air Force we’re talking about, the fighters are dispersed over a number of bases, with the most obviously being found on the main air force bases (Tampere-Pirkkala, Jyväskylä-Tikkakoski, and Kuopio-Rissala in this case, as Rovaniemi is too far north to be of much importance for this operation). The Finnish forces also has their trusty C-295 Dragon Shield SIGINT platform airborne, and there are a number of Finnish GBAD and air surveillance systems spread out (NASAMS-ER isn’t found in the database, so we presume CAMM has won the ITSUKO award).

Sweden and other countries are friendly but not involved in the fighting. That means that BAP (made up of four Italian Eurofighters, of which three are serviceable) and Sweden (operating a GlobalEye and escorting JAS 39E Gripens out of F 16 Uppsala) share their situational picture with Finland. You may argue this is unrealistic, but it felt like a suitable middle ground between modelling a full-scale Baltic Sea-wide conflict on one side and a completely isolated Finland on the other.

The Russians

Perhaps the biggest question for the scenario is the Russian order of battle. I have made a number of assumptions based on the current Russian OOB, in essence assuming upgrades are taking place, a number of units are pulled from other districts to support the conflict, and that modern weaponry (R-77 being key here) are available in numbers (this last point has proved a surprisingly big hurdle when it comes to modernising Russian air power, but in another ten years I am going to give them the assumption of finally having a modern active MRAAM).

The basic view at the start of the scenario on the Russian side. Note the civilian bogey in the north-east, one of a handful of civilian aircraft flying around.

With regards to the units, the following will be doing the fighting and the changes I’ve made:

  • 159 IAP in Besovets (Petrozavodsk) will have received another Su-35S squadron to replace it’s current Su-27SM one, bringing their total strength up to three squadrons of Su-35S,
  • 790 IAP at Kohtilovo replaces their last Su-27SM with Su-35S, bringing their total strength up to two squadrons of MiG-31BM and one of Su-35S. The Su-35S squadron is forward-deployed to Pushkin (St Petersburg), while the two MiG-31BM squadrons provide escort to the AEW&C aircrafts and fly CAP with a prosecution area over St Petersburg while patrolling a bit further back,
  • The naval air arm will have converted both squadrons to MiG-29K (with a small number of MiG-29KUBR), and both 279 KIAP and 100 KIAP are forward-deployed to Gromovo, which have been used by the units earlier,
  • AEW&C is provided by the 610 TsBP out of Ivanovo Severnyi with a small number of A-100 (the unit currently operating variants of the A-50),
  • Current plans call for three squadrons of Su-57 to have been delivered by then. I have based two of these at Pushkin and Besovets respectively, being designated 31 IAP and 14 IAP respectively. The designations are more and indication that these are reinforcements deployed north for this particular conflict rather than me betting that A) these will be among the first three units two set up squadrons of Su-57, and B) that these two wings would provide the squadrons used to reinforce a Finnish conflict.

Again, there are lots of arguments to be made with regards to which particular units would come to support, whether there would be more or less or units, and how many would be available to meet a Finnish air strike and how many would be tied up with other tasks (such as escort missions) in the same way a number of Finnish aircraft are (again, we are only looking at the Finnish strike and the Russian response, which is an oversimplification, but one that hopefully strikes a balance between engagements too small to provide useful data and those too large to be able to run properly).

The Russian Air Force (and Naval Aviation) will fly three main CAP-boxes in addition to the air defence missions the MiG-31s are tasked with. One box roughly cover the Karelian Ishmuts and inner parts of the Gulf of Finland. This is covered by the Pushkin-based units, and at T=0 there are one flight of Su-35S and two of Su-57 taking off (each flight consisting of two fighters), with a third Su-57 flight and two Su-35S flights being ready at T+60 and another 10+10 aircraft in reserve.

The central CAP-box cover the Karelian Isthmus and Lake Ladoga as well as the immediate shoreline of it to the north and north-east. This is the responsibility of the naval fighters, launching three flights of MiG-29K at T=0, followed by another two flights at T+60, and 15 MiG-29K plus 4 MiG-29KUB in reserve.

The Northern CAP-box stretches roughly from the centreline of Lake Ladoga and up to the centreline of Onega. This is the responsibility of the Besovets-based fighters, which launches one flight of Su-57 and two flights of Su-35S at T=0, with a second Su-57 flight at T+30 and two Su-35S flights at T+60, with another 5+18 aircraft in reserve.

The Navy would likely mainly operate out of Baltiysk, but I included a small surface action group made up of one Project 2235 Admiral Gorshkov-class frigate and two Project 22800 Karakurt-class corvettes.

The integrated air defences consist of a number of units, spread out over both regions:

  • Four battalions of S-400 providing general air defence coverage,
  • Six 9K330Tor-M2KM platoons, defending installations such as radars, bridges, and airfields,
  • Seven 9K37M1-2 Buk-M1-2 platoons, defending different areas and key targets,
  • Four Pantsir-SM platoons,
  • Five 1L257 Krasuha-4 and three 1L267 Moskva-1 jammers/ELINT-platforms,
  • One 55Zh6M Nebo-M (Tall Rack) VHF-band radar at Valamo in Lake Ladoga,
  • One 36D6 (Tin Shield B) air surveillance radar on Gogland.

In all cases I’ve strived to place the units at local high spots to provide ample coverage.

In addition, the army units are obviously supported by their own air defence units:

  • Two S-300V4 Antey battalions supporting the main thrust, being placed close to the bridges over the Bay of Vyborg,
  • Five 9K22M1 Tunguska-M1 platoons,
  • Eleven ZSU-23-4 Shilka platoons.

In a real-world scenario there obviously would be a ground-war going on, hiding the GBAD-platforms among a number of other radar blips. To provide for something to that effect without having the processor try to smoke itself, I’ve inserted a total of 30 generic T-72BM platoons (four MBTs in each). In this scenario, their only mission is to mask the important units.

Again, it is entirely possible to argue for any number of changes to the setup presented above, but at the end of the day I believe there should be enough fireworks to separate the wheat from the chaff.*

F-35A – Don’t fire until you see the whites of their eyes

IsoT reportedly flew with bombs. My spontaneous reaction was that that felt like literally begging for flak, but I was certainly not going to skip over testing that. Especially as Lockheed Martin has argued for the F-35 having an edge over the competition in being able to use cost-effective weapons (i.e. bombs) when others will have to use longer-ranged (i.e. more expensive) munitions. So to begin with, let’s see if the F-35A can bring down a bunch of highly defended bridges with GBU-31!

The F-35A strikes kicking off. Note how the detailed sensor modelling means that one of the vessels in the SAG shows up on both the radar and the AN/ASQ-239 Barracuda of ‘Villisika One’, providing a good fix on the position, while the slightly greater bearing angle to the other vessel means that the radar can’t see it, making the distance to the target more uncertain.

The idea is simple. Four F-35A north and six F-35A south of Lake Ladoga will clean up the ground-based air defence in their respective areas with GBU-53/B SDB II, while the strikes will take place with eight F-35As towards Olonets (plus two escorting) and four F-35As towards the Vyborg-bridges (plus four escorting). All aircraft carries only internal loadouts.

The escorting fighters on the Vyborg strike have no issue cleaning up the enemy fighters with their AIM-120D (AIM-120C-8 wasn’t available in the loadout options), but the ships have noticed them.

This isn’t working out too well. The F-35s dive towards the deck, but both get bagged by the ship-launched SAMs (9M96D, fired from the naval version of the S-350 found aboard Admiral Gorshkov).

The lead is going down in flames, soon to be followed by the wingman. ‘F-22’ in the background refer to ‘Freighter 22’, a Boeing 777 slowly cruising over Pskov, and not a USAF stealth fighter

The northern battle is rather tense, with the enemy fighters making more of a showing.

A number of fighters and missiles from both sides flying around over the border north of Lake Ladoga.

An interesting detail is that the air battle to the north pull away most fighters from the Karelian Isthmus, leaving the door open for the incoming strike aircraft (well, with the exception of the ground-based systems…). It can be mentioned that at this stage the two F-35As have been joined by no less than 13 enemy fighters in the ‘Lost’-column (5 MiG-29K, 4 Su-35S, 4 Su-57). Also worth mentioning that the Finnish fighters have already fired no more than 35 AIM-120D AMRAAMs (against 23 R-77 and eight 9M96D for the Russians), showing the value of large weapon stocks.

However, things take a turn for the worse, and there’s only so many active radarseekers one can outrun. Both the fighters and the Admiral Gorshkov start to take their toll. At the same time the SEAD-efforts and strikes are starting to create some havoc.

The end-result are somewhat surprising. Pushing in to use JDAMs prove though, with 13 out of 28 F-35As not coming home. On the enemy side, more or less the whole first wave of fighters is brought down, with 18 downed aircraft shared equally between MiG-29K, Su-35S, and Su-57. The SEAD-mission is something of a failure, with a large number of the 59 GBU-53/Bs being dropped in-flight by enemy fire. In the end, two Buk TELARs and one Buk LLV as well as a handfull of Shilkas are wiped out. Five bridges are brought down, including one of the heavily defended ones next to Vyborg. Most surprising was the relatively low number of kills for the GBADs, with a Buk and a S-300V4 scoring a single kill each with the fighters and in particular the Admiral Gorshkov proving highly effective. Of course, the large number of missiles in the air that force the F-35s to bleed energy means that the larger systems might have played a more important role in ensuring the kills than the statistics seem to indicate, but considering the large number of missiles fired (10 9M338K from the Tor, 24 9M317 from the Buk, 19 9M311-M1 from the Tungushka, 33 40N6 from the S-400, 48 9M83M from the S-300V4, and 32 9M96D from the Gorshkov), the probability of a kill isn’t overly impressive for the ground-based systems. In part, the F-35s operating at altitude and the flanking position of the Gorshkov probably explain its success compared to the other systems.

Two reruns – including one where I try to actively target the Gorshkov in the first wave of strikes – gives roughly the same result. Yes, you can achieve the target, but there will be significant blood. It feels like it should be doable, but somehow there’s always too much stuff flying around in the air for the aircraft to make it out. The issues with internal loads, especially for the strike- and SEAD-aircraft, is also evident in that two AMRAAMs simply isn’t enough for a serious fight, and if they get cut off from their escorts (who still only sling six AMRAAMs a piece) they will quickly run out off options that aren’t spelled RTB.

But there’s a reason Finland wants JASSMs.

This time with less Finns in the skies of Russia.

The JASSM-strike looks impressive, but the results are surprisingly mixed. The strike aircraft can launch from the safety of staying right above their airfield, but the missiles are vulnerable and need escorting. In the north, the horde of enemy fighters jump on the missiles and the CAP escorts get overwhelmed and shot down trying to protect the missiles. Ironically, this opens up the south, and the lack of fighter cover there means that more or less all weapons get through, reducing four out of five of the key bridges to rubble. But the losses among the CAP and SEAD aircraft that got a bit too close actually means that the Russians achieve a 2:1 kill ratio when eight F-35As are brought down from a combination of fighters and SAMs (including the Gorshkov, which I am really starting to worry about). Still, this was for sure the most effective way of killing bridges, and a one-two-punch of first dragging the fighters north with a four-ship taking off and pretending to pick a fight before turning and running for Rovaniemi while in the south the bridges of Vyborg are bombarded, followed by a second wave after the enemy fighters have returned to their main CAP-boxes might be the holy grail of bridge-hunting.

A quick re-run seems to indicate this is indeed the way forward. The four-ship flying bait does suffer losses (three aircraft shot down, of which one pilot got out), but the enemy losses are serious: nine bridges, 6 MiG-29K, 6 Su-35S, and 4 Su-57. Even despite this not being the out-and-out success I should be possible by making the turn north timed better, this is still a kill:loss ratio in excess of 5:1, and bringing down nine bridges with a combined firing of 24 JASSM isn’t bad. The one thing that was more interesting was the relative lack of success for the SEAD-birds, with both GBU-53s and AGM-88E AARGM-ER (the latter which notably hasn’t been mentioned in Finnish F-35 discussion) being swatted out of the air at comfortable distance by the enemy air defences (again, Gorshkov played a major role).

Typhoon – High and fast

The Eurofighter would in Finnish service align with the UK model, and as such we sprinkle 28 Typhoons with CAPTOR-E radars on the Finnish airfields. Again, let’s first see if we can go out with bombs.

The first step is to launch a four-ship loaded with Meteors from a westerly base to try and sweep away fighters by being able to come in with speed and altitude. The large amount of Meteors pay dividends, as the four Typhoons manage to fight of a number of Su-57 and Su-35S and score five for the loss of a single aircraft.

The Typhoons continue to do well in the air-to-air arena, dodging streams of enemy missiles (including the feared S-300V4) while keeping dropping enemy aircraft. A first wave of SEAD-aircraft causes chaos as enemy fighters and air defences keep hunting swarms of Spear-EW jammers, but the destruction of air defences fail as the strike pair equipped with Spear-missiles fail to properly identify their targets. Still, with a kill:loss ratio at 8:1 things are looking rather promising. Now about those bridges…

The bombers are unable to close on their targets as streams of SAMs force them to keep dodging in the skies above Utti. The combination of DASS and aerodynamics is impressive, and it feels like the aircraft are in fact better able to dodge missile fire than the F-35 was. One possible explanation is that the missiles are fired at longer ranges, allowing for more time to react.

The huge number of Spear EW released by any single Typhoon is a very nice feature. Unfortunately the database doesn’t allow for mixed loadouts, as in reality a SEAD-bird would likely carry a mix of kinetic and EW SPEARs

The whole thing is a bit of a mixed bag. As said, the enemy missiles are largely punching air, but that also means that there’s preciously little in the way of moving forward in the face of combined Buk and S-300V4 fires. Eventually I take manual control and try to push the bombers into firing range of the Vyborg bridges, leading to all four being shot down. The Spears are however a really nice capability, as with the short-ranged loads allowing for four hardpoints dedicated to three each, a pair of Typhoons can bring 24 missiles to the fight. In a fight where volume is crucial, having four aircraft launch 24 jammers/false targets followed by 24 missiles actually allows for some kills, including the Nebo-radar, a 9A83M TELAR and a 9A84 LLV from the S-300V4 batteries, a single Shilka, and five T-72BM as collateral damage during the SEAD-strikes. The Meteors also by far outshine the R-77s, and despite me pushing the bombers too far (leaving 12 Typhoons as craters in the ground) the exchange ratio is somewhat positive with 10 MiG-29K, 10 Su-35S, 4 Su-57, and a single MiG-31BM joining them in the lawn dart-club, netting the Finnish Air Force just over 2:1 in kills-ratio.

Again, the pure amount of munitions fired is enough to make the budget weep:

  • 16x AIM-120C-5 AMRAAM P3I.2
  • 8x GBU-24E/B Paveway III GPS/LGB [BLU-109A/B] (somehow there wasn’t an option for a serious bombload with Paveway IVs in the database, would have been interesting to see how those would have fared against bridges)
  • 70x Meteor
  • 3x Sky Sabre [Land Ceptor]
  • 56x SPEAR 3
  • 72x SPEAR EW

For the Russian side, the expenditure was even worse:

  • 2x R-73M
  • 9x R-74M2
  • 105x R-77-1/R-77M (!)
  • 8x R-37M
  • 6x 9M338K (Tor)
  • 30x 9M317 (Buk)
  • 4x 9M311-M1 (Tunguska)
  • 48x 9M83M (S-300V4)
  • 32x 9M96D (Gorshkov S-350), i.e. the whole complement of missiles
  • 4x 57E6 (Gorshkov Pantsir)
  • …and a ton of rounds ranging from 23 mm to 130 mm in diameter

So where does that leave us?

Well, the Typhoons did better than the F-35 with both the air-to-air ratio and the number of bridges hit roughly similar – though the Typhoons did not manage to get through to hurt any of the bridges at Vyborg, of which the F-35s brought down one. Would it be possible to bomb the bridges in Olonets and use Storm Shadows to get the southern ones?

The first four CAP birds do an excellent job, bagging eleven enemy fighters with their 28 Meteors, and escaping the enemy hail of missiles (25 R-77M/R-77-1 and 10 9M96D) – I must say that if the survivability of the Typhoons in the face of enemy missile fire is anything like this in the real world, I am highly impressed. An interesting detail is that the Typhoons are able to pick out the Su-57 at roughly max weapons range (Meteor) through a combination of Pirate and DASS, i.e. not by using the E-SCAN radar.

After that, things get more harsh. The SEAD-birds and second CAP-wave push deep into enemy territory, and manage to temporarily achieve something resembling air dominance in the airspace covering the whole operational area. Unfortunately it is rather temporary, and poor timing on my part between bomber wave and the overconfident fighters means that the second enemy fighter wave manage to bag a number of Typhoons. However, the bombers managed to get through without issue and bring down four bridges on the Olonets Isthmus (before being shot down by chasing enemy fighters) and with the earlier losses of aircraft that penetrated deep into enemy territory a total of eleven Typhoons were lost. While that is just one better than the earlier case, four out of five bridges around Vyborg was brought down by just eight Storm Shadows (I fired double missiles per bridge, turns out all got through and half the missiles found an empty spot on the map upon arrival) to add to the four bombed bridges, the enemy losses to both aircraft and ground systems was also significant (4x MiG-29K, 8x Su-35S, 7x Su-57, 6x MiG-31BM plus the Nebo, 2x 9A331 TELAR (Tor), 3 9A83M TELAR and a 9A84 LLV (S-300V4), 4x T-72BM).

The Typhoon being able to hit the deck and then take the elevator back up again is a huge benefit when it comes to evading incoming missiles

The Typhoon did surprise me. There’s lots of talk about how it shines in the air-to-air role but suffers in the air-to-ground compared to some of the competition, but the wargaming really drives home the point about how the combination of serious sensors and stellar aerodynamics means that even when the first layer of the survivability onion is penetrated, failing at “don’t be seen” doesn’t mean all that much if the enemy struggle with “don’t be hit”. I also know that quite a few of the losses in the last run could have been avoided if I had had a better handle on things, so even if the final score sheet wasn’t as impressive as I was aiming for, I certainly feel that the aircraft is a solid performer.

Rafale- Everyone gets a dual-seeker

The first thing that strike me when sending out a four-ship of Rafales from the north to try and drag aircraft away is that RBE-2AA radar is able to pick out and identify vehicles on the ground. Not sure if this is indicative of the radar being better than some of the alternatives, or whether there is some checkbox that I’ve marked differently (CMO has quite a few…), but it certainly helps with the situational awareness considering both the F-35 and the Typhoon (to a lesser extent, but still) struggled with creating a proper picture of which enemy ground units are where.

The RBE2 AESA-radar is instrumental in getting a good picture on the ground. In the end it lead to all struck ground targets being either bridges or GBAD-related, with no munitions “wasted” on tanks.

Another interesting detail is that the CAP-birds first choose to use their MICA NG (both IR- and active radar-versions), saving the Meteors.

The Rafales aren’t as overwhelming when it comes to air-to-air as the Typhoon was, and in the intial engagement two of the four fighters are brought down in the first exchange. That’s also where the good news ends for the Russians, as seven of their own are brought down (2x MiG-29K, 4x Su-35S, and a single Su-57). The weapons and sensor range means that only eight R-77M are fired by the enemies, before they have their hands full with evading the incoming MICA and Meteors.

The rather complex main strike

However, the main strike with the SEAD-birds pushing out in front fare significantly better when it comes do dodging incoming missiles. My guess is that  having a larger number of friendly shooters leave the enemy unable to provide proper mid-course guidance, making their fire less accurate, when they have to keep dodging incoming weapons. It is also notable that as opposed to the Typhoon’s ASRAAM – which in effect never was used in the runs I did – the MICA is frequently used by the Rafales thanks to its range.

With no JSM for the Rafale in the database, the main SEAD-weapon is the SBU-54 AASM which sport a 250-kg bomb equipped with glide kit and dual-mode GPS/IIR-seeker. The number carried per aircraft is smaller compared to SPEAR 3 or the SDB-family of weapons, but the bang is still nice and the dual-mode seeker means that mobile targets are valid. Two MiG-31 appear and create a bit of a bad feeling at very-long range, downing a strike aircraft and a SEAD-bird, but the SEAD-effort is by far the best seen so far.

The range of the MICA NG is rather impressive, as is evident here with strike aircraft going feet wet over northern Lake Ladoga (note that Tacview doesn’t draw water in lakes) firing on a fighter heading south over the outskirts of St Petersburg

The end result I dare say is the best seen so far, despite the feared long-range GBAD batteries finally managing to score a few successes against escorts pushing deep and the SCALP-EG somehow seemingly having worse luck with defensive fire compared to the Storm Shadow. The air-to-air game isn’t as impressive, with “only” 17 fighters brought down (6x MiG-29K, 7x Su-35S, and 4x Su-57) against a loss of seven Rafales, but in the air-to-ground arena a total of 13 targets are wiped out (including three of the Vyborg bridges) and the SEAD-side is by far the best yet (the Nebo is dead, as are four 9A331 TELAR (Tor), two 9A310M1-2 TELAR and a 9A39M1-2 LLV (Buk), and four Shilkas. The usefulness of the presumably cheaper MICA (65 fired) also means that just 13 Meteors had to be used for that effect, and the air-to-ground munitions was dominated by the AASM (27 1,000 kg ones for bridges and 30 250 kg ones for SEAD) with an additional eight SCALP-EG for the best defended bridges.

Super Hornet/Growler – Hear me roar

So getting back to where it all started, with the Super Hornet and Growlers. I assume that the losses earlier in the conflict would have been smaller for the Growler-fleet, and that they would have been prioritised in this major strike mission, so the order of battle is 10 EA-18G Growlers and 18 F/A-18E Super Hornets. It is immediately obvious that sending four-ships of Super Hornets out on CAP just isn’t doable, as that occupies too many strike aircraft. At the same time, the plan is to ensure that they stick close to the Growlers for self-protection, better situational picture, and for added firepower. Note that while a Growler in real-life can be used for regular strike missions, the database does not allow for non-SEAD/DEAD-associated lodas.

The first step is simple: put a pair of Growlers escorted by a pair of Super Hornets over south-eastern Finland to get a good overview of the situation.

The Growlers take off, and the magic happens.

You emit, the Growler knows you are there

Immediately they start getting fixes on the different fighters and ships in the area. The “I know everything”-feeling Michael Paul talked about is certainly there.

The only problem with the feeling is that we are feeling slightly overwhelmed, with at least 17 enemy fighters currently airborne. I decide to launch more fighters and temporarily withdraw my current two northwest of Jyväskylä. The fighters trade positively, scoring 11 kills (and forcing a Su-57 down within range of a Land Ceptor battery, which score a twelfth kill!), but lose seven aircraft of their own. Clearly more firepower is needed in the first wave.

Trying to seize whatever momentum I have, I launch an all-out strike with SEAD-escorts. Unfortunately, most of the SEAD-escort figure the SAG is the most menacing target for AARGMs, and while they aren’t exactly wrong, the ships easily swat the missiles out of the air with a Pk close to 1.0. On the positive side, JSOW C-1 turn out to be a surprisingly effective weapon even in the face of the heavily defended bridges of Vyborg, and four are brought down in quick succession. Killing bridges without the need for cruise missiles is nice!

With sixteen own aircraft lost (against 15 enemies, plus the aforementioned four bridges), it’s time for another run to see what could be done better.

The biggest conclusion from the Super Hornet run is that you do need a combination of better situational awareness and longer range to be able to reach the large positive kill ratios wanted by the Finnish Air Force. The AIM-120D doesn’t cut it unless you are able to hide, but the combination of AIM-260 and ATFLIR ensures that the Super Hornet is right back in the game

A few runs later and it’s clear I can’t get the AIM-120D equipped Super Hornet to work as I want it to. The issue isn’t the ground threat as much as the fighters, and compared to the Meteor-equipped eurocanards it simply can’t take on the Russian Air Force and come out with the same kind of kills. This is interesting, as it runs counter to what IsoT said, who claimed that the enemy fighters weren’t an issue. A notable difference was that he used the AIM-260 JATM, which might or might not be coming by 2030.

Just changing the long-range weaponry on two of the four-ships that are flying CAP  while letting the rest soldier on with the AIM-120D made a world of difference. The Super Hornets and Growlers scored 18 kills (6x MiG-29K, 3x MiG-31BM, 5x Su-35S, 4x Su-57) for a total loss of six Super Hornets and no Growlers. Despite the majority of the aircraft flying around with the AIM-120D, twice the amount of JATMs were used (24 vs 12), which tells something about how many earlier shots can be taken and how much a difference that makes also when it comes to the amount and accuracy of the return fire taken. With 16 JSOW, 16 AARGM-ER, and 8 GBU-31 (1,000 kg JDAM) a total of six bridges were brought down (four at Vyborg) and the enemy air defences were seriously reduced (2x Shilka, 2x Pantsir-SM, 3x 9A83M TELAR, 2x 9A82M TELAR and one 9A85 LLV from the S-300V4).  The combination of JSOW and AARGM turned out to be a winning concept against SAMs that stuck to their EMCON and relied upon neighbouring batteries providing the radar picture.

My findings does run rather contrary to those of IsoT. I struggled more with the enemy air than ground defences, and while I didn’t see much in the way of highly effective jamming (though to be honest that might simply be down to not having perfect information, it might be that the enemy operators were sweating and had to rely on secondary systems), the Growlers and Super Hornets were quite able to kill off enemy SAMs if not at will then at least reliably.

Gripen – I have a skibox

As soon as the GlobalEye turn on its radar, it is evident that the situational picture is on another level. I have a full picture of not just where the enemy is, but of who the enemy is as well. This is certainly a step up above the earlier aircraft, and the rather strict EMCON the enemy has been clinging to won’t help.

The level of detail picked out is just on another level compared to everything else tested in this series of scenarios

Unfortunately, the database for the Gripen does not reflect the air-to-ground weaponry offered to Finland in the slightest. No SPEAR, no Taurus KEPD, no LADM, no bombs heavier than 250 kg. Instead I get the BK-90, the AGM-65B Maverick, the RB 15F (Mk 2), and 135 mm unguided rockets – all of which are either already withdrawn or about to be replaced. The original SDB is available in the form of the GBU-39. The available pod is the Litening III, also most likely not what is offered for HX. The air-to-air arena is better, but there’s no option for the seven Meteor short-range loadout, with six and a drop tank being the maximum.

This causes some issues to be perfectly honest, but let’s see if the 39E can bring enough Meteors to the fight to clear away the enemy fighters, and then we’ll see if we can take it from there.

The AI is a bit slow to react to the enemies entering the prosecution area (I believe this being due to the Gripens first having to enter the designated CAP-patrol box before they begin actively looking for intruders), but soon missiles start flying in both directions

The Su-57 turn out to be something of an issue, as to begin with they have a bit of headstart from how the mission is set up, but also because of the inability of either the GlobalEye or the Gripens to get a good long-range radar lock. It isn’t a major issue, the combination of ESM and IRST systems do pick them out at comfortable distances, but it does give the enemy the first shots.

A quick reset to give the AI somewhat more sensible instructions, and we’re off to the races.

As has been seen in a few scenarios, taking off from Helsinki-Vantaa isn’t necessarily a great idea. The lead fighter is quickly brought down, leaving the wingman to temporarily fight off twelve enemies, half of which are Su-57s. It goes surprisingly well, and the Meteors bring down four MiG-29K before a Su-57 manages to close in and finally take it down with a R-77M at close range.

Launching from Helsinki in the middle of a bunch of Russian fighters rushing north is a bad idea

The rest of the battle is somewhat divided, as both sides lose aircraft. An interesting detail is that the Meteor-evading enemy fighters get down to lower altitudes, where two Finnish SAM-batteries combine to bag two fighters. Still, 3:7 is not the kill ratio we were looking for.

With the enemy fighters at least temporarily pushed back, I launch the strikes. As I have a good fix on the GBAD-positions around the bridges at Vyborg, I task the SEAD there with greater detail, while further north I again rely on a more general Wild Weasel-y thing of going there trolling for SAMs and then trying to kill them. Again, with nothing more lethal than GBU-39 for SAMs and GBU-49 for the bridges I don’t have particularly high hopes of actually get anything nailed down on the score card. However, sending fighters into harms way should say something about the survivability of the Gripen.

It doesn’t begin particularly well, with two Su-57 jumping the four northern SEAD-birds immediately after take off before their escorts have been able to form up. After that things temporarily get better as the CAP-fighters bag a few enemy aircraft, before they quickly turn south again. The Vyborg SEAD-strike with GBU-39s is surprisingly effective, bagging two Pantsir-SM and a total of six different TELAR and LLV in the S-300V4 battery. At the end of the day, there is no denying however, that with none of the strike aircraft carrying Meteors, they are simply too vulnerable to enemy air, and in the end the enemy not only manage to protect all their bridges, but also achieve an impressive 13:22 score (for those interested, the GlobalEye which some state will be shot down the minute the fighting start actually survived).

I feel like the main issue is the inability to fly mixed loadouts with a few Meteors in addition to the strike weapons, which really hurt the survivability of the strike aircraft. The answer for round two is obviously to fly a smaller number of strike aircraft per target, instead letting a number fly heavy Meteor loadouts as escorts (and not let the Helsinki-pair take off in the middle of the enemy fighters).

The SEAD-strike close to Vyborg does go rather well, but there really is a need to launch large number of weapons to ensure some get through

This run works out better. Meteors are nice, although the Gripen does seem to be the aircraft which struggle most with the Su-57. The second time around enemy fighters notice the stream of GBU-39 heading toward the S-300V4 battery, and fire away all their weapons as well as giving the SAM-sites the heads up to turn on their radars and join in the fray. A large number of weapons are shot down, but three TELARS and a LLV are still turned into scrap metal. The northern SEAD mission is able to take down a Buk-unit, nailing two TELARs and an LLV. Unsurprisingly, that still isn’t enough to get through to the Vyborg-bridges, but two of the northern bridges are brought down by the two strike aircraft sent north. The air war land on a 2:1 kill ratio for the Finnish Air Force (11 Gripen against 6x MiG-29K, 3x MiG-31BM, 6x Su-35S, and 7x Su-57). The Gripen was able to avoid missiles at an acceptable rate, though it certainly was no Typhoon.

This would be the place where I would do the final run, combining cruise missiles and bombs and putting everything I’ve picked up so far into practice. However, as noted the Gripen armoury in the database lacks a heavy cruise missile, so there’s nothing to see here. However, considering the similar performance of the JASSM and SCALP/Storm Shadow above, I believe it is safe to say that we would have lost 2-4 aircraft less, and brought down a few more bridges. Similarly, having mixed loadouts would probably have allowed for a second pair of striking aircraft to the north downing another bridge or two. The SEAD might also have turned out better with SPEARs than with SDB, but to be honest the difference likely wouldn’t have been game changing. Yes, a few TELARs more would have been nice, but for this scenario that would probably have been neither here nor there.

Conclusions

So where does that leave us? Neither here nor there to be honest, this is a commercial simulator based on open data, I am a happy enthusiast with no major knowledge on the inner workings of how to set up intelligent air strikes, and there were a number of weapons and loadout options missing from the database. But lets put down a few short notes:

  • To win the air war and get the kind of kill ratio the Finnish Air Force want and need, a combination of better situational awareness and long-ranged weapons is needed. The Super Hornet/AIM-120D struggled in this scenario, but bringing even a moderate number of AIM-260 JATM into the mix turned the tables,
  • Large weapon stocks is a must. Especially in the air-to-air and SEAD-missions the expenditures of weapons is huge. At the same time, the enemy will face similar issues. The impact this will have is difficult to model in this kind of single mission scenarios, but it is notable that e.g. the extremely deadly Admiral Gorshkov in several scenarios ran out of long-ranged missiles half-way into the scenario,
  • The ability to avoid the kinds of missile volleys that the scenarios saw from both fighters and ground-based systems really is key. At the end of the day the Typhoon being able to rely on its superior aerodynamics to avoid missile after missile was one of the big eye-openers to me personally when running the scenarios,
  • MICA NG is nice. It was the only mid-ranged weapon to be really useful (besides the AIM-120D when carried by the F-35A which could use its stealth to get close enough), with next to no IRIS-T, ASRAAM, or AIM-9X having been used. Without knowing the sticker cost compared to the Meteor, I do believe it would be a big benefit in a real scenario,
  • The F-35A managed to get by with the AIM-120D to a much better extent than the Super Hornet, but the small number of weapons really hurt the aircraft when faced with hordes of enemies. It also wasn’t able to strike the most highly defended targets with bombs without suffering serious losses. At the end of the day it was a solid performance, but one not quite as outstanding as one could have imagined,
  • The GlobalEye wasn’t particularly vulnerable, and the Casa didn’t in fact get hit in a single mission! At least in this scenario, as long as there are own fighters it was possible to operate large aircraft in western Finland,
  • There was a number of surprises to me personally when it comes to details. The Typhoon and Rafale performed better than expected (especially considering the lack of JSM for the Rafale), the Gripen somewhat worse, and the Super Hornet being a mixed bag (poor with AIM-120D, good with AIM-260) but no single aircraft was a clear failure or winner.

There’s an endless number of details one could discuss when it comes to whether the scenario was set up correctly, and feel free to run your own scenarios if you have CMO installed, but these were my findings. Again, I probably can’t stress enough that this was done largely for fun and with very limited insight into Finnish Air Force CONOPS and the finer details of the bids now on the table, but it certainly was an interesting challenge!

*Pun very much intended, we are after all discussing SEAD/DEAD-options here.

The Wasp that Refused to Die

The famous (misquotation) of “reports of my demise have been greatly exaggerated” comes to mind when speaking to Boeing. The Super Hornet is certainly undergoing a rough patch, with the SECNAV Carlos Del Toro trying to kill off the plans to keep building brand-new Super Hornets in the next few years, and instead wanting to focus on the F-35C (and to a lesser extent F-35B) which was described as “a far more significantly capable aircraft”. This is something of different message compared to the earlier one which has been making rounds, where people such as the US Navy’s chief of the naval operation’s air warfare directorate, Rear Adm. Andrew Loiselle, have expressed that he would prefer to focus more on the mid-life update (Block III) instead of on new-builds because any new-built Super Hornet with their 10,000 hour airframe will fly past 2055, and they don’t see “a lot of analysis out there that supports fourth-generation viability against any threat in that timeframe“.

Boeing readily admits neither message is particularly helpful for their export campaigns.

However, one has to give Boeing a point in that it is clear that at least some of the messaging is clearly directed a result of domestic politics. The US Navy has been struggling to fit all of its priorities into a defence budget that is flat or potentially even falling, with new classes of submarines and destroyers (to replace both early Arleigh Burkes as well as the Ticonderoga-class cruisers) competing with the Super Hornet-replacement-to-be NGAD for funds. The risk of a delay to NGAD is obvious, especially as the force struggles with how to close a “fighter gap” and the house having thrown out the latest set of USN calculations this summer (this is part of a rather longstanding pattern of the politicians not trusting the US Navy to make sound long-term planning decisions and run projects efficiently, which unfortunately isn’t completely unfounded). At the same time, it is rather obvious that some of the Super Hornet’s greatest friends on the hill are representing Boeing-strongholds and might not be guided solely by strategic insights…

Regardless of the outcome, the stated goal of replacing the Super Hornet during the 2030’s does seem optimistic considering the reported state of the NGAD. Crucially, for the time being there also doesn’t seem to be a plan for how to replace the EA-18G Growler with its unique set of capabilities (this is the place where visionaries usually throws in a slide showing a bunch of networked unmanned platforms shooting lightning-shaped datalinks and electronic attack effects between allied forces and against enemies respectively like a latter-day Zeus, but I would again like to state my scepticism of there actually being something resembling a practical plan buried in those slides. The USMC has something a bit more real in the works, but so far that doesn’t include a true Growler-replacement either).

The Juan Carlos I (L 61), an unlikely but apparently not impossible candidate for future Super Hornet operations. Source: Armada Española Twitter

But what is really interesting is the second wind of export interest in the aircraft. Granted Canada apparently has kicked out the fighter (though it has to be said it hasn’t been particularly well-loved north of the border after Boeing dragged Canadian aerospace company Bombardier to court over their jetliners), but the German Super Hornet/Growler-buy seems to have survived the change in government and is reportedly moving forward, and as is well-known there is a strong push to try and get the Indian Navy to see the light and acquire the Super Hornet for their carrier operations. More interesting was Boeing disclosing that they are in talks with Spain about the Super Hornet (almost certainly related to the same EF-18A/B Hornet and EAV-8B Matador/Harrier II as the recently revealed F-35 discussions), as well as stating that the UK have expressed interest in Super Hornet STOBAR testing conducted for the Indian Navy efforts (and where this  testing could lead). Notable is that the flight deck of the Queen Elizabeth-class compares rather well with that of the the INS Vikramaditya when it comes to length and area (though the designs obviously differ), and while it isn’t angled, the Juan Carlos I with its 201.9 m long and 32 m wide flight deck actually matches the 198 m long and 30 m wide angled recovery deck and 195 m long take-off run of the INS Vikramaditya. Speculations about a STOBAR-carrier in Spanish service may hereby commence (though I will warn you that the step from discussing the theoretical possibility to actually converting the vessel is a rather drastic one).

Regardless, there is a non-trivial risk that any Finnish Super Hornets will be the last new-built rhinos rolling off the production line, and the Finnish Air Force has been strongly stating the importance of being aligned with the main user (to the extent that the Swedish Air Force threw out their own long-term planning and instead adopted the Finnish set of requirements in order to ensure that the JAS 39E remained a viable alternative). So how is Boeing intending to work around this issue?

To begin with, while the Super Hornet likely will bow out of USN service before the Finnish Air Force retire HX, as mentioned the Growler will likely soldier on for a bit longer (again, compare the A-6 Intruder retiring 22 years before the EA-6B Prowler), allowing for updates made to keep that platform modern to support exported Super Hornets. The German order is also a key piece of the puzzle (I mean, does anyone really think that the Germans will retire any platform acquired before having worn it down? We are after all talking about the country that flew F-4F Phantoms in central Europe until 2013).

But the big news is the Open Mission Systems, which allows for what Boeing describes as containerised software. Behind the jargon lies a principle through which the software is written once, put into a so called fusion app (the ‘container’ in ‘containerised software’), which then allows it to be pushed out to a number of platforms – manned, unmanned, fixed-wing, rotary, you name it – simultaneously through making the software hardware (and even manufacturer) agnostic.

Illustration from Boeing’s International Fighter Conference briefing describing the principle. No surprises regarding the platforms included. Courtesy of Boeing

While the principle is significantly easier to implement on a PowerPoint-slide than in real-life, successful lab testing with containerised fusion algorithms in the F/A-18 Block III and the F-15EX has taken place, and plans are progressing for flight demonstrations. If the program develops as expected, it would provide the opportunity to piggy-back F/A-18E development onto that of e.g. the F-15E(X), which would grow the user base and spread development costs significantly.

But it’s not just the aircraft itself that are easily upgradable. Michael Paul of Raytheon Intelligence & Space is happy to explain how the NGJ-MB pods are not only cutting-edge today, but that their open design ensure they will stay that way.

The current ALQ-99 jammers made their combat debut in Vietnam, and although it has undergone numerous upgrades and still is a competent system according to most accounts, there’s no denying that it’s greatest days are already behind. The new family of jammers, the mid-band unit of which will be first one out and which passed Milestone C (current version accepted as production standard) earlier this summer, will bring a serious improvement. Trying to find a suitable comparison, Paul struggles a bit. “It’s a level above going from mechanically scanned radars to AESA-technology,” he explains. “It’s a significant leap just because of its AESA-technology, but then you add the power.”

The EA-18G Growler at Tampere-Pirkkala during HX Challenge. Note the large (mock-up) NGJ-MB under the wing. Source: Own picture

And while having an AESA-array means that you can do all sort of nice stuff – both Lockheed Martin and BAES are pushing the fact that they are doing some serious electronic warfare stuff with their arrays – the power and dedicated subsystem really takes things to another level. While a modern AESA-radar for a fighter can give self-protection at levels earlier only dedicated platforms could provide, it is still very much a case of self-protection. Because the dedicated platforms have also stepped up their game. The fact that the NGJ isn’t just a Naval program but sorting under joint oversight in the DoD structure speaks volumes as to the importance the Pentagon places on the program, even while at the same time discussing the need for fifth generation aircraft (the push to integrate the pod on USAF fighters is another datapoint). The NGJ allow the Growler to do what Raytheon describe as “force-level protection”, and while the exact capabilities of the pod are classified, it is significant to note that the Pentagon has been placing an ever increased importance on the electro-magnetic spectrum (EMS), and being able to treat it in the same way as other more familiar terrain – doing manoeuvres and conducting fires in it, so to speak.

This is what modern day air operations looks like

Achieving EMS-superiority will be a key mission for any air force in the future, and the Growler is well-poised to support any force attempting to do so.

What the design of the pod brings with its increased power output is the ability to handle wider spectrums and go straight to the key nodes, which in an integrated air defence systems might or might not be the shooter – it might as well be a surveillance system standing way back, feeding information to silent SAM-batteries operating missiles with their own guidance systems (active radar or IIR). But while the pod is great, the integration of the two-pod shipset with the mission systems of the aircraft really is where the magic happens. The “incredibly integrated” nature of the shipset means that the Growler and the pods are sharing data back forth, including from their own sensors but also from third-party sources (including via satellite), together creating the situational awareness that the Growler is known for, the “I know everything”-feeling as 9-year Growler veteran (and Prowler before that) Michael Paul puts it. The location of the arrays on the pods also means that the aircraft is able to cover the strikes throughout their mission – either from stand-off ranges or as penetrating platforms.

A ‘red shirt’ checking a Sidewinder mounted on the wingtip of a F/A-18E Super Hornet of VFA-106 ‘Gladiators’ aboard the USS Dwight D. Eisenhower. For the time being the Supers still occupy a prominent role on the flight deck of any US carrier. Source: @FlyNavy Twitter

While the days of the Super Hornet might be numbered, no one quite seem to know the exact number for sure. It also has to be remembered that many of the particular drawbacks quoted by the US Navy center on how it would like to operate in a China-scenario. The situation in Finland is markedly different in a number of ways, including the significantly lower emphasis placed on range. The very real risk of losing support from the main user toward the last decade or two of the aircraft’s career is no doubt a significant drawback, but at the same time the offer here and now would fit the Finnish Air Force extremely well both as a capability but also in the FDF’s general culture of being somewhat risk averse and preferring mature systems and a continuous iterative development rather than radical steps. And as icing on the cake comes the Growler, which not only would be a strategic assets for both the political and military leadership throughout the span from peace through crisis and into war, but also a huge political signal of the close bond between Finland and the US.

As Paul noted:

It likely wouldn’t have been possible to offer this ten years ago.

One Last Hurrah – Finnish Media visits an HX-contender

It’s getting difficult to remember how it all started back when HX was just a working group thinking about if Finland needed a new fighter, but seven years later here we are, perhaps a month away from the decision.

But there was still room for one last media trip, this time by Saab who used their corporate Saab 2000 (the particular example, SE-LTV, being the last civilian airliner ever built by the company) to fly a whole bunch of media representatives for a day-trip to Linköping to one more time share the details about their bid, with the GlobalEye getting much of the attention.

And it’s hard to argue with this. Yes, the Gripen sport a number of nice features from a Finnish point of view, but what really sets Saab’s offer apart from the rest is the inclusion of not one but two airborne early warning and control (AEW&C) aircraft. The capability in itself would bring a huge shift in Finnish air operations regardless of whichever fighter would be at the other end of the chain (no, your favourite fighter isn’t a “mini-AWACS” just because it has a nice radar, you still won’t leisurely be cruising around on 10 hour missions gathering intelligence and keeping an up to date air picture while paying biz-jet operating costs). The value of the kind of persistent situational picture provided by a modern AEW&C platform is hard to overstate, especially in a Finnish scenario where the attacker will have numerical superiority (meaning that the decision about when and where to send Finnish fighters will have to be calculated carefully to ensure it is possible for them to do something that actually has an impact on the battle), the flat and forested nature of the country (meaning that there is a lack of suitable mountaintops on which to place groundbased sensors, instead anyone operating at very low levels will enjoy lots of radar shadows from which they can sneak up on Finnish targets), and the very joint nature of any major conflict stemming from the long land-border and the right flank and rear being composed of water (meaning that any higher-level situational picture need to take into account all three domains).

It is difficult to express exactly how much of an asset a modern AEW&C platform would be for Finland, and that include both the Air Force but also the FDF as a whole as well as the government. And for the foreseeable future, the only realistic option for a Finnish AEW&C platform would be if Saab takes home HX. Picture courtesy of Saab

Crucially, the value of the GlobalEye as an intelligence gathering platform for everything from the operational level commanders to the highest levels of political leadership is unprecedented in HX (and arguably within the FDF as a whole, the SIGINT CASA is nice, but it fills a more niched role). With two GlobalEyes, building a baseline situational picture in peacetime is possible (even more so if data is shared with the two Swedish aircraft coming), and that include both airborne and ground traffic, as the aircraft sports a ground moving target indicator mode (GMTI) making it possible to see any vehicles moving on the ground (the cut-off being rather low, in the neighbourhood of 20 km/h). The GMTI doesn’t create individual tracks for every echo due to the huge amount of vehicles moving at most roads during any given time (though it is possible to manually start tracks for interesting vehicles) but instead the operator will follow general flows and densities. Needless to say, keeping an eye on vehicle movements around garrisons and on exercise fields or counting trains (feel free to start measuring how much of the Oktyabrskaya Railway is within say 300 km of the border) would be a huge boost to the Finnish intelligence gathering work and a huge benefit for all branches of the FDF and the government it supports. Having this baseline situational picture and being able to detect changes in it would be of immeasurable value to both the civilian and military leadership in any kind of crisis, and there is no other single measure that would provide as much bang for buck as getting an AEW&C when it comes to this aspect – and the only way to get it into the budget is through Saab’s HX offer.

(The EA-18G Growler does share some of the same traits in this regards in raising the peacetime intelligence gathering capabilities to a significantly higher degree than ‘ordinary’ fighters, but when stuff stops emitting the value decreases rapidly)

This is an aspect that – even if not completely forgotten – has received surprisingly little attention in media. It might be that the inclusion of the completely new capability and the ramifications it has have been difficult to grasp, but in any case it is likely to have a significant impact on the wargames.

Interlude: in some of the darker places of aviation forums there have been people claiming that Saab is trying to sell a fighter that in fact isn’t the best one out there through packaging it with an AEW&C platform. Regardless of whether it is correct or not, that is a completely moot point. The Finnish Air Force isn’t looking for the best fighter, the Finnish Defence Forces is looking for the best capability they can get for 10 billion Euro (and 250 MEUR in annual operating costs), and if pairing 64 JAS 39E Gripen with two GlobalEyes provide a greater combat capability than the competing packages, how Gripen fares in one-on-one air combat against some other fighter isn’t interesting in the slightest to Puranen or his team.

The GlobalEye is more or less everything you would expect from it. Based on the Global 6000, it leverages the comfort of the airliner to ensure that crew can handle the missions that can go “well above” 11 hours. This means a rest area for the relief crew members, as well as cabin pressure and noise levels on par with the regular business jet. The top speed is slightly reduced due to drag from the radar, but the range is in fact more or less the same as the lower and more economic cruising speed roughly cancels out the increased drag. The business jet philosophy of the baseline Global 6000 also brings with it a lot of other nice details, such as dispersed operations being aided by a very high redundancy of key systems and small logistical footprint (the airliner is e.g. equipped with four generators to ensure that it isn’t stopped by a generator failure. On the GlobalEye that means that no additional power sources are required, and the aircraft can in fact remain fully mission capable even if one generator is lost). For a Finnish scenario, a key detail is that the sensors can be initiated already on the ground, meaning that the aircraft is operating as soon as the wheels are up. The five operators can either do general work or specialise in different roles, such as air surveillance, sea surveillance, the aforementioned GMTI-mointoring, ESM/SIGINT, and so forth. Displays in the relief area and in the cockpit allow for the relief crew and pilots to follow the situation, which is valuable e.g. if new threats appear. The exact sensor setup can be changed according to customer needs, but can include everything from the ErieEye-ER radar, a dedicated maritime radar, AIS, DSB, IFF, and classified ESM systems.

Now, an AEW&C alone doesn’t win any wars, but the Gripen is no slouch either. Much has already been said on this blog, but the baseline fact that Gripen from the outset is made for the very same concept of operations that Finland employs certainly gives it something of an edge. Worries about size and range are also of relatively minor importance in a Finnish scenario, and instead factors such as 40% less fuel consumption compared to legacy Hornets (and with that obviously also significantly reduced exhaust emissions, which should make certain government parties happier) play a significant role when laying out the budget for the upcoming years.

While the usage of a very much originally naval fighter has proved a great success in Finland, and  while several other countries have had good luck operating “normal” fighters in the high north, there’s no denying that Gripen is the only fighter (honourable mention to the MiG-31, but we’re not getting that one) from the outset made to feel at home in the subarctic conditions. Picture courtesy of Saab

Saab was happy to go into some detail about how they envision missions to be flown, illustrating with a typical high-end SEAD/DEAD mission against S-400 batteries where the aim was to take out two 92N6E “Grave Stone” radars. The batteries where in turn protected by a number of other ground-based air defence systems, including a Nebo-M (no doubt chosen for the express purpose of raising questions about the viability of the F-35 in the same scenario), Pantsirs, and a pop-up Buk-M1-2 (or M2, just the ‘SA-17’ designation was shown). In addition two pairs of Su-35s were flying CAP under the guiding eye of an A-100. The approach for this mission was rather straightforward. Two Gripens did a hook to the north where they feigned an attack through using the EAJP EW-pods and swarms of LADM cruising around presenting jamming and false targets, thereby drawing two Su-35s north.

At the same time the main striking force consisting of a four-ship Gripen with 7 Meteors and 2 IRIS-T on each acting as fighter escort and two additional Gripens doing the actual strikes with six SPEAR and six LADM each (plus pairs of Meteors and IRIS-T for self-defence) headed east towards the target. With the LADM and the internal EW-systems providing jamming and the escorting Gripens dealing with the fighters (of which one pair was out of position, as you might remember), the strike pair launches their  full dozen of SPEARs which, together with escorting LADMs, go out and hunt down the two radars. Not even the pop-up Buk appearing behind the strike aircraft can ruin the day.

Now, the scenario above is both rather fascinating in that Saab was ready to go into such detail, and not at all surprising since that is more or less exactly how nine aviation geeks out of ten would have set up the mission given what we known about Saab’s talking points and the weapons and stores offered to Finland. Perhaps the most interesting detail is that Saab thinks six SPEAR are enough to take down a defended S-400 radar (when escorted by EW-missiles). However, what on the other hand was interesting was who was telling the story.

Mikko Koli in a 39E Gripen simulator, note the large WAD-display up front. In real aircrafts, he has now also logged time in the front-seat of the JAS 39D two-seater. Picture courtesy of Saab

Meet Mikko Koli, pilot and operational advisor to Saab since this spring when he retired from his job as test pilot for the Finnish Air Force. As a retired major, he may be outranked by many of the other advisors involved in different parts of the HX circus, but he brings some serious street cred instead. Most of his career was spent doing a fifteen year posting as an air force test pilot, mainly focused on the F/A-18 C/D Hornet and the upgrades it went through in Finnish service. This include different roles in both MLUs, but also being among the key players in the AGM-158A JASSM integration project, which culminated in him being the first Finnish pilot to release a live JASSM.

Which definitely is cool, but don’t let that distract you from the main story: he is a seasoned test pilot who has spent years studying and implementing how to get the best out of a fighter in a Finnish context. When Koli decides to spend his retirement days at Saab, that says something. And when he says that he trusts that their bid is “extremely strong”, that is something else compared to Saab’s regular sales guys.

What Koli decided to focus on, in addition to guiding the assembled Finnish media through the scenario described above (together with retired Swedish Air Force pilot Jussi Halmetoja) was certainly things we have heard before, but with a bit of a different emphasis. The “superior situational awareness” thanks to advanced networking and “excellent” human-machine communication of the aircraft are talking points we’ve heard from Saab before, but they often take something of a back seat when non-pilots talk. Discussing the “live chain” is also a refreshing change to just talking about the kill chain, because as we all know actually living and flying a working aircraft is the first step to being able to actually do something useful. And Koli also in no uncertain words explained what he thinks about the GlobalEye.

GlobalEye pays itself back at any level of a crisis, both for military as well as for political decisionmakers [… It is also] a very capable SIGINT-platform

The JAS 39E Gripen is rapidly approaching operational service, but so is the scheduled date for first aircraft delivery under HX. Picture courtesy of Saab

Speaking of JASSM-integrations, I would be wrong not to mention Saab’s latest talking point when describing the size of their weapons package. Readers of the blog might remember that I had some questions regarding the numbers presented during the BAFO release, when it sounded like the weapons offered were worth 1.8+ Bn EUR, until you read the fine print, at which point it sounded more like 1.35+ Bn EUR. Now Saab was back with the comparison “more than ten times the total publicly quoted costs of the Finnish JASSM-project”, which they confirmed referred to 170 MEUR for the JASSM integration and missiles, making the weapons package coming with the Gripen worth 1.7+ Bn EUR. That is a lot, and considering the 9 Bn EUR acquisition cost also include the aforementioned two GlobalEyes, puts things into scale. An interesting detail is that the JASSM-project as mentioned included the integration costs as well, with Saab now taking care to point out that all weapons integration costs are found under other budgetary lines, and the 1.7+ Bn EUR figure just covers the series production and delivery of the munitions.

Modern weapons are expensive, but that is indeed an arsenal you can go to war with without having to worry about every single missile. At least not initially.

With the Norwegian budget figures having raised more questions than the Swiss decision answered for the F-35, and the US Navy trying to kill off the Super Hornet production line faster than you can get a hornets nest fully cleaned out from a redcurrant shrub (which for me is approximately two weeks of time based on empirical testing), the Finnish skies are perhaps looking ready to accept a non-US fighter again. In that scenario, the Gripen is certainly a more likely choice than the two larger eurocanards, but at the same time questions of maturity surround the aircraft that is bound to reach IOC with an operational unit only in 2025 – the same year the first HX fighters are to be delivered. Basing the 39E on the proven 39C/D-platform certainly helps, and the decoupling of flight critical software from other systems seems to have been a winning concept considering the pace at which the test program has advanced (this includes software updates on flying aircraft every four weeks on average up to this point of the program). However, with nine aircraft operational and the first Batch 2 (series production standard) already off the production line, Saab just might be able to cut it in time.

And there’s always the GlobalEye.

An interesting detail is that as the GlobalEye is optimised for endurance, the aircraft is expected to most of the time operate with a 4.8° angle of attack, meaning that the radar is tilted downwards the same amount to keep it horizontal for optimal performance (as are the operator positions inside aircraft, including chairs, desks, and displays). Picture courtesy of Saab

A big thank you to Saab for the travel arrangements.

Boeing Refusing to Let New Fighters Steal(th) the Show

The difference between success and failure for Boeing in HX is razor thin.

Granted, as there are no prizes for second spot, you can make that argument for all fighters involved, but Boeing still has something of a uniquely deceptive situation. While a favourite of many analysts – and it has to be said, on good grounds – the reliance on US Navy interest in the platform means that the step from favourite to bottom rung is a short one.

The F/A-18E Super Hornet visiting Tampere-Pirkkala AFB and Satakunta Air Wing for the first (?) time back during HX Challenge. Source: Own picture

Boeing representatives readily admit that the very public battle fought between senior US Navy leadership and politicians over the future of the Super Hornet isn’t helping their marketing. At the same time, they don’t admit to being overly worried in the grand scheme of things. The US Navy fighter shortfall is very real, and even if the service would want to phase out the Super Hornet they will struggle to do so any time soon based on the sheer number of Super Hornets in service and the lack of a viable alternative. While Rear Adm. Gregory Harris, director of the Air Warfare Directorate of the Office of the Chief of Naval Operations, might say the service “must replace the Super Hornets and the Growlers by the 2030s“, it’s a statement that fits poorly with him saying in the same interview (from April this year) that he “expects the Navy to have “a better idea” within the next two or three years as to whether it will buy a manned or unmanned fighter to follow the Super Hornets”. To put it bluntly: the F-35A declared FOC in 2017, with the concept being more or less clear when the X-32 and X-35 designs were selected as concept demonstrators in 1997. If that point in time is 2023-2024 in the case of NGAD, it would mean FOC in 2043-2044, putting the F/A-XX quite some way off from having replaced the Super Hornet before the end of the 2030’s. Even with a faster development timeline – say reaching FOC by 2035 – building a few hundred new fighters and rolling them out will likely take at least five years even on a rushed schedule. And even then, the more specialised Growler is likely to stay on call for longer. The EA-6B Prowler survived 18 years longer in US Navy service compared to the baseline A-6 Intruder, and a few years even further in the USMC. Even provided for a faster turnaround thanks to developments in electronics and unmanned systems (which frankly hasn’t happened just yet, but conceivably could be the case), the Growler staying in service for five to ten years after the retirement of the Super Hornet doesn’t feel like a stretch.

It’s probably something along these lines of reasoning that leads US politicians to question whether the Navy really can afford to run down the Super Hornet production line and just focus on the Service Life Modifications-program (though it has to be said that in some cases securing jobs in homestates does seem to be the first priority). If the Super Hornet stays in service until 2045, and the Growler until 2050, the final round of US Navy-funded Growler upgrades could then be used to feed into an export-directed Super Hornet “Block X” standard in much the same way that Block 3 rests on many technologies originally developed for the Growler.

It isn’t an implausible scenario, but it is far from certain. And if the Finnish Air Force isn’t prepared to gamble on it, the Boeing supplied BAFO can easily be headed for the metaphorical shredder.

But that’s not something that you will see Boeing worrying over, at least not officially.

They express confidence in all aspects of their bid. It’s suitable to Finnish needs, it provides efficiency, there’s a strong weapons package, it’s affordable and mature, and the industrial participation package is solid and based on their long experience of working with Finnish industry in supporting the current Hornet-fleet to ensure security of supply. Boeing also states that it provide the tools to operate independently in a high-treat environment by constituting “a complete self-sustaining package”. Keen readers will note that “self-sustaining” isn’t the same as “sovereign” promised by Dassault and BAES, but still.

A key point worth keeping in mind is that Boeing is taking the Finnish authorities on their word when they have been repeating that they aren’t buying a fighter but a package of capabilities. The Growler is the obvious example, but Boeing also took the opportunity at Kaivari 21 to release further details on how they see Manned-Unmanned Teaming (MUMT) in the future.

Let’s first make something absolutely clear: the ATS is in the BAFO, but it is an option. It’s a potential future capability with a price tag given for the systems and associated infrastructure.

As such it won’t be evaluated in the deciding wargames (at least not in the first point, it is more unclear to me how the second evaluation point played with 2030-standards would treat future growth capabilities). However, it offers some interesting capabilities, especially as the concept is that anything mission-related is put into the nosecone which is easily snapped on or off to install another one. There’s obvious benefits here as the same airframe can fly different missions, but there’s an interesting secondary benefit to a small high-tech country such as Finland as well. It is possible to with a relatively small input develop, either alone or together with other operators, new payloads tailored to Finnish needs. This is based on the fact that one doesn’t need to develop the aircraft itself (as is the case with building a new UAS) nor having to run the traditional integration verification testing done on external stores. The nosecone payloads can then either be offered on the export market (provided exports kick off) or then kept under wraps as a covert Finnish capability.

The ATS during testing in Australia. Note the size of the nose compared to the rest of the aircraft. Source: Boeing media

The payloads that first come to mind are quite naturally ISR once as well as electronic warfare. Different sensors, such as electro-optical ones, SAR, and ESM, are likely among the low-hanging fruit that relatively easily could create a significantly improved intelligence gathering capability to the benefit of both the FDF as a whole but also of the political leadership in times of both peace and war. Crucially, this would fit in well with the EA-18G Growler enhancing the same in the electromagnetic spectrum, and would do so while relying on mass and attritable platforms instead of a few (individually more capable) high-value assets. The relatively easily modified sensor payload also means that the adversary can be kept in the dark regarding what capabilities the Finnish Air Force operates.

In the electronic warfare domain, being able to push large jammers or sensors close to the enemy is an extremely valuable opportunity as well. And as has been discussed on the blog numerous times, size does matter when you discuss arrays and antennas. In essence, having a MALD with a 150 litre payload and the ability to get back in case things goes well is a significant step above just firing jammers in front of you.

Another nice feature is that the ATS can be forward deployed with a relatively limited footprint. As such, keeping the ATS spread out on smaller bases in case of heightened crisis to allow for more rapid reaction can be a viable tactic e.g. in the face of increased QRA alerts, where the ATS can be launched from a civilian field (or even a road base in times of war) and by the time the scrambled Super Hornets are about to link up with the aircraft to be intercepted the ATS can already be on location and have provided an updated situational picture. And as we all know, a better situational picture allows for off-loading flight hours from the fighter fleet. In wartime, pushing the sensors out in front of the fighter can also allow for a better situational picture without breaking stand-off distance, or e.g. for long-range AIM-260 JATM shots where the Super Hornet remains passive at distance and let the ATS which is closer to the target provide fire control and guidance via its own radar and datalink. For the Finnish Navy, which faces something of a sensor gap following the ever growing range of modern weapon systems, having a larger number of flying sensors, some of which could be flown from bases along the southern coast, certainly is an interesting proposition.

But with a fixed budget occupied by the non-option stuff in the BAFO, from where would the ATS be funded?

The obvious place is munitions and upgrades. The Super Hornet BAFO include a sizeable munitions package, but some of the stuff included is things that could be carried over from current stocks. This include bombs, but also e.g. the option to skip or limit the buys of the AIM-120C-8 now included and do a jump from the AIM-120C-7 currently in service to the AIM-260 JATM. It’s a calculated risk to go heavy on the sensors and save on the missiles during the first few years, but it wouldn’t be the first one taken by FDF. Another aspect is that the regular operational budget does include money for upgrades and yet more senors and weapons, at some point these could potentially be routed to sensors who do their own flying. The basic software and hardware as well as interfaces to allow for MUMT will be included as a part of the Super Hornet/Growler baseline by 2030 in any case.

“The timing lines up very well,” Boeing notes with regard to the ATS, and they mention German interest in MUMT for their Super Hornet/Growler-package (while pointing out that Finland is the first country offered ATS as part of a fighter competition). There’s also apparently “higher trust” in Finnish calculations compared to Swiss ones when it comes to the affordability of operating the aircraft, as well as the confidence that stems from the continuation of the trend in which the electromagnetic spectrum is continuously growing in importance (the latest data point being the studies to see whether the F-15EX or some other USAF fighter could employ the NGJ-family of jamming pods), especially in the light of continued Russian investment in the field.

An Italian F-35A from Baltic Air Policing turning over the Helsinki waterfront during the Kaivari 21 air show, an air show which saw all HX contenders flying, with the exception of the Super Hornet. Source: Own picture

At the same time, the US Navy publicly says they want to move one, and over the waters next to Kaivopuisto the F-35A is busy trying to steal(th) the show. The difference between success and failure for Boeing is HX is razor thin.

Swiss decision rolls in F-35’s favour

Let’s begin by the obvious: Finland isn’t Switzerland, and HX isn’t AIR2030.

It still would be wrong to say that the Swiss decision, and especially the way it was made, wouldn’t have bearing on the Finnish evaluation. The odds of the stealth bird just went up.

A Finnish F/A-18C Hornet and an Italian Air Force F-35A teaming up during Exercise Ramstein Alloy 21-2. Source: Finnish Air Force Twitter

I will leave the finer details of Swiss politics to those better versed in that topic, but let’s start by looking at why the Swiss decision matters for HX.

Something a number of commentators have missed is why the Swiss evaluators felt the aircraft was the right choice:

It includes entirely new, extremely powerful and comprehensively networked systems for protecting and monitoring airspace. The F-35A is able to ensure information superiority; this means pilots benefit from a higher situational awareness in all task areas when compared with the other candidates.

The following sentences then goes on to discuss that the aircraft is designed “to be especially difficult for other weapons systems to detect”. The debate about whether Switzerland need a stealth fighter misses the point. The main reason why the Swiss appreciate its effectiveness isn’t the stealth features, but the networked nature and integrated sensors giving the pilots a higher situational awareness. Oh, and by the way: it’s stealthy which is a nice bonus. And it seems set to stay in service the longest. The last two points arguably in of higher importance in HX, but even then F-35 took home AIR2030.

The point about staying in service further resonates with the product support question. ALIS gets good points, the maintenance system is modern and simple, and the large number of both fighters produced in general and European operators in particular ensure cooperation opportunities in both training and operational usage.

Crucially, the calculations made by the Swiss also showed that the aircraft was significantly cheaper compared to the second lowest bid when calculating full life-cycle costs (i.e. acquisition and 30 years of operations), coming in at approximately 2.0 Bn CHF cheaper (3.2 Bn EUR).

The big deal here is that as opposed to several of the recent wins for the F-35 where it has been the favourite from the outset, in Switzerland the F-35 is most likely the most difficult political choice. That the evaluation still found that the F-35 won three out of four categories including combat capability, product support, and cooperation opportunities is significant, as if the race would have been close the temptation to fudge the numbers a bit to ensure a more politically acceptable winner could certainly have been there. And crucially, unlike some other evaluations, the fact that the F-35 wasn’t the bestest and greatest in all measurable ways ironically lends a bit more credibility to the evaluation.

That’s the good news for the F-35, and it would be naive to think that the Swiss findings are taken out of thin air. The grey fighter again cements its position as the new European standard fighter in a way the F-16 did decades ago.

An interesting aspect is the worries about ownership of data and cyber security. I’ve discussed the topic before, especially with regards to the ALIS/ODIN, but the full quote is interesting.

All candidates were able to guarantee data autonomy. In the case of the F-35A, the system’s cyber management, the security of its computer architecture and its cyber protection measures combine to ensure an especially high level of cyber security. As with all other candidates, with the F-35A Switzerland controls which information to exchange with other air forces via data link, and what logistics information to report back to the manufacturer.

This is also certainly a good sign for F-35 from a Finnish point of view, as the cyber security and sovereignty aspect are among the questions still lingering with regards to the fighter. While Lockheed Martin has stressed that it isn’t an issue, it is one of those things that are next to impossible to judge based on open sources. However, that Switss evaluators has reached the conclusion is certainly promising.

But there’s also a few flies in the ointment.

The cheapness is… strange.

I could write a long-winding paragraph about it, but Steve Trimble summed it up perfectly in 280 characters:

A few key points still deserve to be reiterated. There is a significant difference between those struggling with whether to upgrade early blocks and export customers now jumping aboard and getting what presumably will be TR-3 hardware (slated for introduction in 2023) from the start. Especially considering the significant maturity the program has achieved in the past few years it is likely that the maintenance and operating costs will continue on a downward spiral.

However, the GAO isn’t overly impressed, and while originally deliveries from 2026 should have been Block 4, that standard is pushed back, and GAO isn’t sure that the current schedule will hold either.

In 2020, the program added a year to its Block 4 schedule and now expects to extend Block 4 development into fiscal year 2027. We found, however, that the program office did not formulate its revised schedule based on the contractor’s demonstrated past performance. Instead, the schedule is based on estimates formulated at the start of the Block 4 effort, increasing the likelihood that the scheduled 2027 completion date is not achievable.

Perhaps more worrying is how the aircraft became 3 billion euros cheaper to operate – by offloading flight hours into simulators. This is certainly one of those ‘Yes, but…’-arguments. Modern simulators are very good, and with a continued emphasis on things like electronic warfare and advanced (expensive) weaponry, it certainly makes sense to do more training in simulators. The Finnish Air Force is a good example of this, with HX seemingly largely skipping two-seaters for operational conversion, going Hawk->simulator->HX single-seater instead. However, there still are things that differ between simulators than the real thing. A key thing to note is the lack of cues which pilots learn to fly with, everything from vibrations to G-forces which are very difficult to model. Former Hornet-pilot C W Lemoine flew DCS a few years ago, and in the video discussed how flying the real jet differs from high-end commercial and military simulators and how the armed forces are using them. The DCS-specific issues obviously doesn’t apply when you have a properly modelled cockpit, the other issues do.

More crucially, the German longer version of the presser include further details on the process (and overall could function as a good template for the eventual HX releases) and discuss how that part of the calculations were done.

Diese basieren auf den Angaben der jeweiligen Luftwaffen respektive der Marine in den Herstellerländern, wie sie im Rahmen der Offertanfrage bei allen Kandidaten identisch angefragt wurden. Die Antworten der Kandidaten wurden mit den Erfahrungen der Luftwaffe mit dem F/A-18C/D und den Erkenntnissen aus der Evaluation verglichen.

In other words, seems the Swiss have asked main operators about simulators versus real flight hours, and the USAF has returned with a 20% lower number compared to the USN, AdA, and LW. There is preciously little in open sources to explain this difference in real terms. Yes, the F-35’s simulators are good, but the rest are no slouches either. I can see no clear reason why it wouldn’t be possible to run a simulation-heavy training curriculum for the rest of the fighters as well, if that is what you want.

Another key number thrown around is that the F-35 would require 50% fewer take-offs and landings compared to the current F-5E Tiger II/F/A-18C Hornet-fleet. This honestly doesn’t feel overly impressive, as it is unclear to me how much the old and short-legged F-5E pushes up the current number, and it is unclear to me if the comparison is between 36 F-35A and the total fleet of 66 F-5E/F Tiger II and F/A-18C/D Hornets or an interpolated 36 to 36. However, notable is that the Finnish Air Force reportedly has had issues meeting the NATO-standard of 180 flight hours per pilot and year, and while there are some redeeming features of Finnish operations (such as short transits to training areas), cutting 20% of the flight hours while at the same time increasing the complexity of the mission sets and bringing in new roles won’t happen. At least not in a good way…

Which brings us to the numbers. The Swiss are looking at a procurement cost of 5.068 Bn CHF for 36 fighters, which converted to Euros and extrapolated to 64 gives us the figure of 8.2 Bn EUR, well below the 9.6 Bn EUR maximum of HX. So far so good, until you realise that the 10.432 Bn CHF cost of operating the aircraft over 30 years gives 16.9 Bn EUR extrapolated to 64, giving you an annual operating cost of 563.3 MEUR, which is significantly over the FinAF 270 MEUR annual budget.

With 20% less flying hours than the competition.

…and that brings us back to the fact that Finland isn’t Switzerland.

The mission set which 36 F-35A are supposed to handle is described as follows:

As far as fleet size is concerned, for all four candidates a fleet of 36 aircraft would be large enough to cover Switzerland’s airspace protection needs over the longer term in a prolonged situation of heightened tensions. The Air Force must be able to ensure that Swiss airspace cannot be used by foreign parties in a military conflict.

Which is a realistic threat scenario in my opinion. As long as the French suddenly doesn’t get revanchist over the dissolution of the Helvetic Republic, there’s little direct threat.

Swiss government infographic describing how the integrity of own airspace is protected. Source: Swiss MoD

The stated aim for the Finnish forces in a ground war is to:

Making it possible to slow down and wear out the aggressor’s
land attack in selected terrain and ultimately defeat him. All
services and civilian authorities as well as the Border Guard
participate in land defence.

…which can be described by this fancy infographic of the battlefield in 2030.

The multi-domain battlefield in 2030. Source: FDF Homepage

This difference is evident in the DSCA-notices as well, were the Swiss DSCA-notification include a grand-total of 40 AIM-9X Sidewinders, 12 Mk 82 500-lb bombs with JDAM-guidance kits, and 12 SDB-II small glide-bombs. You do not fight a war with that kind of stock, although the possibility to carry on the weapons currently used by the Hornets are there. As has been discussed for Finland, the weapons and spares bought will be a huge part of the overall acquisition costs, suddenly making the 8.2 Bn EUR Swiss pricetag look less than stellar (although granted the Swiss DSCA-notification included more spare engines compared to the Finnish bid). Comparing costs is a case of apples against pears against olives with the occasional mango thrown into the mix, but the resulting smoothie evidently tastes like Finland won’t be able to acquire and operate 64 F-35As at Swiss prices.

More confusingly, if that is 20% cheaper than everything else, there’s some serious discrepancies between what the Swiss asked for and the five packages offered to Finland for 9.6 Bn Euros.

Lifting the Fog

Lockheed Martin’s bid for the HX programme is likely the one that has caused the most speculation, and this blog has seen its fair share of that as well. Scott Davis, Lockheed Martin’s Managing Director for Finland, was happy to chat and clear up some of the remaining confusion.

Let’s begin with the elephant in the room: the offer in their BAFO is for 64 F-35A, and this is most certainly the number the company expects to supply Finland in case they win. The package of weapons they would supply does include an undisclosed number of weapons that include AIM-120C-8 AMRAAM, JSM, and AGM-158B-2 JASSM-ER. All of these are included in the BAFO as regular to-be-delivered items, and not as options. Davis acknowledged that he had been unnecessarily vague in his comments at the earlier HX media event, leading to speculation about options to adjust the figures either up or down. However, it is now evident that Lockheed Martin joins Boeing and Saab in the 64 fighter-game.

A pair of Norwegian F-35A taking part in Arctic Challenge Exercise 21 that just finished. The drag chute used by the Royal Norwegian Air Force is an option in the Finnish tender. Source: Mathias Charman / NATO Allied Air Command

The JASSM-ER needs no further introduction, as in essence it is an upgrade of the Finnish Air Force current silver bullet. The weapon slings a 450 kg warhead out beyond 900 kilometers, where an IIR-seeker provide terminal guidance. The current weapons sport a one-way datalink, but it seems like the AGM-158B-2 will feature the updated two-way WDL of the AGM-158D JASSM-ER (the missile formerly known as JASSM-XR). Is it better for Finnish requirements than the Taurus KEPD 350? The Finnish Air Force thought so last time around, but as noted in my last post the weapons sport rather different design philosophies, and it isn’t necessarily a question with a straightforward answer.

A weapon in the class of the JASSM is needed to wipe out certain hardened targets, but the smaller weapons also offer interesting capabilities, especially as internal carriage offer other benefits besides stealth as well. As long as the weapons are carried internally an external observer will not be able to say if the aircraft is loaded, and in that case with what kind of weaponry. For an Air Force that cherish ambiguity – perhaps a bit more than really is healthy – being able to both train and perform QRA-missions in peacetime without sneaky plane spotters with diplomatic immunity being able to tell what the aircraft carries is likely to captivate their imagination. This allows for example raising the number of AMRAAMs carried in response to intel you don’t want the adversary to know you have, or even to change the loadout from a pure air-to-air one to a land-attack or anti-shipping one, all depending on the situation (you can obviously also do the classic ‘lets fly by their ship at low altitude with doors open and show that at least one aircraft carries JSM’ to really have them guessing about how many of the F-35s zooming around are ‘just’ fighters and how many are potential threats to maritime forces). It’s not a war-winning feature, but it is a positive secondary effect recognised already during the Cold War when USAF F-102/106 deltas were flying around at potential flashpoints.

The 55Zh6M radar of the Nebo-M complex is a mobile VHF-band radar that is built to provide early warning of incoming stealth platforms. Source: Vitaly Kuzmin via Wikimedia Commons

Davis understandably was interested in discussing electronic warfare, considering the in his opinion oversimplified illustration that featured on the blog a while back. Showing a generic strike fighter unable to jam anything but the X-band, the impression was that the ‘Strike Fighter’ would have a hard time without its buddy the EA-18G Growler that provide multi-band support. Davis, however, isn’t impressed.

Fourth generation fighters are correctly standing off well outside of the threat rings, as they should. Our threat rings are exponentially smaller. […] I can’t tell what our [jamming] bandwidth is, but it is more than just the X-band.

As has been discussed earlier on the blog, the key jammer on the F-35 is the large AN/APG-81 AESA radar, which thanks to its size produces a thin and accurate jamming beam which is harder for the adversary to detect. Another benefit is the availability of the onboard power (read: engine) and cooling systems, which allows for a very higher jamming output power. This in turn is further enhanced by the F-35 being able to get in closer, or as Davis put it: “Our jamming signal is ten times as powerful as podded systems, so we’re closer because our stealth allows it and more powerful.” However, that still leaves the question of the other bandwidths, such as the low-band radars that are growing in popularity thanks to their better anti-stealth characteristics. But here as well the F-35 has the answer: it will blow them to pieces. The response might come of as arrogant, but isn’t without merit. The antenna arrays tend to grow with wavelength, meaning that the systems outside of the those which the F-35 can jam tend to be rather large and not moving around in the same way as their lighter compatriots. The F-35 signal gathering capability as well as unique datalink and ability to operate as a formation all combine to give it a high situational awareness, which should make the kinetic response a more feasible tactic compared to many other platforms. Granted, while you in the grey zone might possibly jam hostile sensors, you don’t really get to blow them up unless it is a full-blown war, and you don’t block enemy communications through blowing things up, so there is still a lack of flexibility compared to dedicated EW-platforms such as the Growler when discussing manoeuvres in the electromagnetic spectrum (which seems to be the next trend, brace yourself for new and exciting buzzwords!). On the other hand the F/A-18 Hornet-replacing capability the Finnish Air Force asked for in HX didn’t include communications jamming so it remains to be seen how the FinAF judges the value of these.

Another issue raised by the illustration was the question of what happens on the egress, when the aircraft have turned their tails towards the threat. Davis isn’t too worried about that prospect either (and it should be noted that he has actually flown fighters operationally for quite a few years).

I put no great importance in the fact that the jamming is just in front – there are other aircraft in the formation that could support from behind for example

The engineer in me would like to point out that at some point the second pair of fighters in the formation will have to turn around as well, but it is a good reminder of the fact that judging the capabilities on a single fighter vs. fighter rarely gives the complete picture.

Norwegian F-35As participating in a Red Flag exercise earlier this year. The exercises are widely regarded as the gold standard when it comes to large realistic exercises simulating a high-end air war, and the F-35 has reportedly built up a solid reputation among the participants. Source: Forsvaret.no

Another issue that Davis liked to comment was the notion by Saab that their unnamed competition according to Saab’s analysis would be able to maintain around 35 fighters mission capable in a Finnish scenario. Davis noted that he was unable to say if the comment was directed towards the F-35 (neither am I as Saab didn’t say, though I would think it’s a fair guess to assume so) that in their case it is certainly not correct. Despite the issues still plaguing the F-35, including the engine shortages, the aircraft still reached a 76 % mission capability rate in the USAF during 2020. Crucially this happened while the cost per flight hour continued to come down, meaning that the growth in the mission capability rate was organic, for the lack of  a better word, and not just a case of stocking up with more spare parts. So far peacetime rates of over 80 % are routinely seen, with some units even clocking about 90 % at times. More impressive is that a number of Red Flag exercises have seen the participating F-35s pull through the whole three week exercises without losing a single sortie due to maintenance or reliability associated failures. The core message here from Lockheed Martin is that in times of crisis, “almost all” of the 64 Finnish F-35s would be available for service, and there’s an interesting anecdote to back up this claim: recently Eielson AFB (every Finnish F-35 watchers favourite base as it sits at the same latitude as Rovaniemi AFB) had a snap readiness check to get the maximum number of aircraft ready within 24 hours. The end result was that by the end of that deadline 26 out of 26 F-35A were mission capable. While Davis didn’t point it out but stuck to discussing ‘his’ fighter, one thing is evident: he has the anecdotes to back up his readiness claims, something that Saab hasn’t as the 39E isn’t in operational service yet.

As noted in earlier posts, Finland would also receive a “great” security of supply program through the industrial participation package which would include manufacturing of stealth panels and major component assembly, ensuring that in times of crisis there would be local know-how available to ensure that the aircraft stays flying. An interesting detail is that opposed to for example the Danish or Polish F-35 buys, Finland actually have gotten firm commitments for an undisclosed number of components (including panels) not only to the Finnish fleet but to the global F-35 fleet as well. This in turn touches upon perhaps the strongest single selling point of the F-35A, and one that has received surprisingly little attention in Finnish media. The global fleet is significant, or even huge compared to most of the competitors, and a sizeable part of it is found in Europe among our close partners. In the words of Scott Davis:

We offer Finland a platform you won’t be the last user of

While the F/A-18C Hornet has on all accounts been a huge success for Finland, the cost of not being able to align the upgrades with the main user has meant that keeping it relevant has been more expensive than the FDF would have liked to. With 400+ F-35s in Europe by 2030 purely based on already signed contracts, the risk of that happening with the F-35A is negligible. The global F-35 fleet has also been rather busy showcasing its capabilities in the last few weeks, including Norwegian F-35As participating in ACE 21, as well as HMS Queen Elizabeth not only launching RAF and USMC F-35Bs operationally on combat missions over the Middle East, but also seeing RAF aircraft taking part in an austere forward basing exercise with Italian F-35s. While there are levels of austere basing and people might argue about whether the exercise was as demanding as a road base in Finnish winter conditions, the fact is that much of Finnish Air Force dispersed operations would likely take place in roughly similar locations with the use of smaller civilian airfields with limited rather than non-existent infrastructure.

Night operations aboard HMS Queen Elizabeth. While it is unclear if any ordnance has yet been released by aircraft operating out of the carrier, the combat missions in themselves are somewhat historic ones, as they represent the first carrier-based combat operations flown by the UK since the Libyan operation as well as the first combat missions flown by US aircraft from a foreign carrier since 1943. Source: Commander UK Carrier Strike Twitter account

The F-35A is in many ways the fighter which likely would change Finnish Air Force tactics and wider concepts of operations the most, and I ask Scott Davis whether he is worried that the F-35 won’t show its full capability in the Finnish wargames due to those involved using current tactics developed for the Hornet? He confirms that while it is true that the tactics need to be revised due to the increased situational awareness and very-low observability of the F-35, he isn’t worried about the evaluation. The Finnish team has by now ample experience from both briefings and flying the aircraft in simulators aided by both operational USAF pilots and Lockheed Martin personnel, and he is confident that the F-35 will show its best side in the evaluation.

I am impressed by the level of detail the HX-team got into […] We are confident it will be a fair evaluation

Cruise Missiles Flying over your Head

As I was quite vocal in questioning the decision of Saab to opt for the Taurus KEPD 350 as their heavy cruise missile, I was not overly surprised when Saab contacted me and asked if I wanted to discuss the choice as well as their bid more generally. It turned into a rather interesting brief, with representatives from both Saab and TAURUS Systems GmbH (owned to 67% by MBDA Deutschland GmbH and 33% by Saab Dynamics AB).

Saab further discussed the extent to which Finnish-Swedish cooperation and possible synergies play into the bid. Saab has not only run all company simulations of scenarios based on the FDF requirements to find the best setup for Finland, but in a step further they have also run the same simulations with Finland and Sweden being allied to see how this setup would work if Finland wouldn’t have to go at it alone. The BAFO includes not only Saab’s offer, but also drafts for a number of political agreements for closer defence cooperation, such as for a shared situational air picture benefiting from both countries operating not only the same aircraft types, but similar versions of these aircraft. With the Finnish requirement to align the configuration of the eventual HX-winner with the main user, this include not only the earlier announced Swedish political decision to align their 39E configurations with the Finnish requests (including long-range precision strike and “enhanced electronic attack capability”), but also operating similar GlobalEye-configurations. In a change compared to earlier announcements, Bombardier keeping the Global 6000 in production allow Saab to use the same platform for both Finland and Sweden as is currently in service with the UAE. This opportunity saves quite a bit of certification and R&D costs compared to the earlier indicated change to Global 6500 as the basic platform for the GlobalEye, which frankly wouldn’t give too much of an improvement. An improved wing and new Rolls-Royce BR710 Pearl gives better hot and high performance as well as better range and endurance for the newer Global 6500, but for a Finnish scenario the Global 6000 should provide plenty enough of performance and the up-front savings can be better spent elsewhere.

Saab is very much in agreement with Lockheed Martin that having a single-configuration fighter fleet is preferable due to the flexibility it offers when it comes to for example fleet management and readiness. The required capability to be able to pull it off is in Saab’s case based on the brand new integral electronic warfare system – which carries on the tradition of the highly respected JAS 39C/D EW-system – as well as the EAJP offering the wider frequencies and high output power needed to counter not only fire control radars but also other parts of the electro-magnetic spectrum. This goes hand in hand with Saab’s (and Sweden’s) long history of advanced datalinks, which means that Swedish fast jet tactics place a very high emphasis on the four-ship formation as a tactical unit as opposed to the traditional focus on the lead-wingman pair, and allowing e.g. for passive triangulation (another area where Saab and Lockheed Martin is in agreement is that this is a very cool and useful feature).

But none if this is really earth-shattering news. What about that cruise missile?

A Taurus KEPD 350 impacting a concrete target. Picture courtesy of Taurus Systems

The reason behind the Taurus KEPD 350 losing out to AGM-158A JASSM for integration on the Finnish Hornet-fleet was discussed, and Saab responded in rather general terms.

Many factors were behind the original JASSM choice, how flexible were the US authorities in allowing integration of Taurus on Hornet? I don’t know.

Having said that, Saab wasn’t interested in commenting on how flexible the US might be in integrating JASSM on the 39E Gripen. They did however (correctly) point out that the Finnish JASSM inventory is set for either retirement or a mid-life update by the time the Hornets retire, and that technically there are no issues with integrating the weapon.

Still, there’s no tears shed by Saab over the (forced?) choice of Taurus KEPD 350, as they are quick to point out that the weapon is extremely potent, and offering a rather different design philosophy compared to the US offering. Interestingly many of the design choices actually do mirror the design choices of the Gripen-platform itself, lending some credibility to Saab’s argument that it is the superior weapon for a Gripen-fleet in Finnish service.

The basic idea is that radars evolve, and as such the value of stealth will diminish over time. Physics, however, remain surprisingly constant, and as such flying at very low level under the radar horizon is bound to work equally well in 2060 as it does today. This is then coupled with a highly redundant navigation system based on INS, GPS, a radar altimeter, and an IIR-sensor that together open up for image- and terrain-based navigation. This is couple with an advanced mission planning software to ensure that the weapon will get where it needs to be, which take into consideration the overall situation including threats, terrain, friendly forces, and weather.

The mission planning is actually a really interesting feature, as not only is it reportedly very precise (a requirement for being able to fly at extremely low altitude), but by simulating the entire strike it is able to run detailed Monte Carlo-simulations which take into account for example changes in the weather conditions or how the situation for the later missiles released changes with earlier missiles in the strike hitting their targets. The idea is to ensure economy in weapons use, and avoid wasting missiles in saturation attacks. This is a common theme for the marketing of the weapon, promising “low acquisition costs combined with low run-time costs”.

At the heart of this capability is the 480 kg warhead that sport a dual-charge layout with a pre-charge and a penetrator, resulting in what Taurus claim is “unmatched concrete penetration capability” and crucially allows the missile to stay low and attack also hardened targets at shallow dive angles instead of the more classic pop-up profile. But while the bunker-busting features is what the warhead is best known for, specialised fuzes allow additional flexibility such as overflight airburst modes. And again, flexibility further adds to the cost-efficiency.

In short Taurus claims that several factors add up to ensure that more enemy stuff will go boom for the same amount of money compared to JASSM (and yes, continuing the trend after the BAFOs both Taurus and Saab are naming their competitors as opposed to talking about hypothetical comparable systems). In addition, the weapon reportedly outranges the current AGM-158A JASSM in having approximately 600 km range if released at altitude (usual caveats apply).

Interlude: The saga of the JASSM-ER continues

Back in February it seemed the JASSM-version offered to Finland was the weapon originally designated AGM-158D JASSM-XR. However, turns out there’s another twist in USAF weapons procurement that came to light a while ago, as there are in fact a number of different JASSM-ER and -XR versions. The ‘original’ JASSM-XR apparently is still in development though it is now designated AGM-158D JASSM-ER, but it is pushed back as a version of the -ER designated the AGM-158B-2 is entering production. This weapon which is offered to Finland feature the more advanced datalink of the -XR but lack the improved wing (and hence not reaching the same range). At the same time, the US Navy scrapped the JSOW-ER and is focusing on an JASSM-ER version that will feature some components of the AGM-158C LRASM allowing it to also be used as an anti-ship missile, meaning that in total there seems to be at least six different versions of the JASSM either having reached production status or in different stages of development, four of which are designated JASSM-ER (AGM-158B, AGM-158B-2, AGM-158 ‘Navy-version’, and AGM-158D, with the other two being the AGM-158A and the anti-shipping AGM-158C LRASM). Range numbers of the AGM-158B-2 are somewhat obscure, but likely close to the original AGM-158B at around 930 km.

In any case, both the AGM-158B and Taurus KEPD 350 would offer significant increases to the ranges of Finnish air-launched weapons, and while cutting the Jaroslavl-Vologda railroad might be easier with the AGM-158D, a conflict would see no shortage of potential targets within 500 km of the border.

Render of Taurus KEPD 350 showing what is by now a the standard layout of weapons in its class with a boxy fuselage, pop-out wings and rear-mounted fins and engine. Picture courtesy of Taurus Systems

Back to Gripen, the aircraft has been in the headlines recently in Sweden due to budgetary discussions. Saab played down these, noting that none of the reported cost overruns are directly tied to the development of the 39E, but rather they stem from political infighting, earlier overly-optimistic Swedish Armed Forces budgets, and so forth. Not having seen the original documents behind the headlines it’s hard to comment further, though it arguably wouldn’t be the first time there has been a refusal from Swedish politicians to recognise what defence capabilities actually cost.

However, for HX the question is largely moot, as Saab is very much in agreement with Boeing in that now the best and final offers really are the final offers, and that by now everything is set if not in stone then at least ink. The Swedish proposal is firm with regards to contents, price, as well as delivery, and as such it is somewhat different from the FMS framework. And there won’t be any major changes or ‘up to’-wordings.

We have been puzzled by some of the reactions or comments swallowed by the media, there is not ‘later’

We’ll have to see what Lockheed Martin has to say about that.

Saab also confirmed that there are further weapon types in the offer that haven’t been disclosed. While there certainly are some who would like to believe this to be the RBS 15, in reality it is likely to be about gravity bombs.

A more cut-throat statement was that not only is Saab certain that the robustness and availability of the Gripen ensure that “with margin there will always be more than 50 Gripens available in peacetime”, their business intelligence based on open sources gives that for “the competition” the corresponding number would be about 35 fighters available. And that is before including the fact that Gripen would be flying less due to the GlobalEyes providing a better situational picture.

We’ll have to see what “the competition” has to say about that.

The Further Adventures of the F-35 (and the Super Hornet)

The HX competition continues to provide surprises in the post-BAFO era, and this week’s media event courtesy of the US Embassy was no exception. After a short introduction by the embassy that described the strong partnership that exists between Finland and the US (and which included a note about Finnish exports and know-how finding its way into key US programs, such as the Polar Security Cutter), it was on to the two US fighter manufacturers to discuss their bids. And while they might be taking part in the same media event, the tone certainly tells of the battle heating up. Boeing discarded outright the theory of ordinary fighters working as EW-platforms, noting that an AESA radar will only provide X-band jamming, and only during ingress, leaving you unprotected when exiting the target area, while Lockheed Martin explained how the F-35A doesn’t require support from electronic warfare platforms or ISR assets “as opposed to 4th generation fighters”.

Illustration of the difference between having a dedicated EW-aircraft compared to an unnamed strike fighter (no points for guessing which, though) using its AESA-radar as a giant jammer. The colour coding symbolise different bands, with the underwing pods of the Growler jamming the S-, C-, and X-bands while the centre-line pod handles the VHF, UHF, and L-band part of the spectrum. Picture courtesy of Boeing

Much of the presentation from Boeing should be well-known talking points to readers of the blog, but in short Boeing still sees international opportunities for up to 400 Super Hornets on the international market. This includes everything from Germany, which already has down-selected the aircraft, to less likely cases such as India.The German contract is the most important one from a Finnish point of view and would likely be a minor facor in HX as it would mean another serious European operator, though my expectation is that the deal won’t be inked until the new government is formed and have gotten up to speed (read: 2022, which also seems to be roughly the timeline Boeing is expecting). Some have questioned the future of the programme as a whole with the rise of Die Grünen, but so far the programme is continuing apace and Germany has indeed already invested money in the preparatory studies, which would imply that the MoD is expecting it to survive a change of government. Notable also that while the Greens aren’t particularly keen on nuclear weapons, part of the allure of the Super Hornet in the strike role comes from the synergies of the Growler which is part of the non-controversial luWES Tornado ECR-replacement program. Of the near-future decisions, the Swiss and Canadian decision are expected within June and before the end of the summer respectively. Switzerland and Canada are less likely to end in work for St Louis, but you never know.

[Industrial participation] is an area where we are clearly differentiated, we have an unblemished track record.

The major talking points of Boeing were the Growler and their industrial participation package. There won’t be final assembly of aircraft or engines in Finland in case of a Boeing win, but rather production of major aircraft and engine structures for the Super Hornet/Growler. While less media-sexy than the final assembly promised by BAES and Saab, the devil is in the details and which one is better than the other from economic or military points of view will depend on the level of assembly (i.e. how large parts are being delivered to be assembled?) compared to how major the parts produced are. The direct industrial participation is in total 49 different programs spread out over 20 different companies, and on the US side include not only Boeing themselves but other major partners of the Super Hornet industrial team such as Northrop Grumman, GE Aircraft Engines, and Raytheon. On the indirect side, Boeing is striving to “leverage the breadth of the whole company”, i.e. including the civilian and other divisions and not just Boeing Defence.

Discussing weapons in a later call, Boeing confirmed that their offer include a modern version of the AMRAAM, the AIM-120C-8. This is quite a bit of a step-up from the Finnish Air Force’s current C-7, though exactly how much is unclear. Many sources refer to the C-8 as a rebranded D, which is the weapon responsible for the recent test that the USAF described as “the longest known air-to-air missile shot“. Exact range is obviously both classified and depending on a number of launch parameters, but the F-14 Tomcat/AIM-54 Phoenix combo is known to have downed drones in 200+ km tests, so that should give a good indicator of the ranges we are talking about. However, long-time defence journalist Joseph Trevithick stated that his understanding is that the C-8 is a hybrid-version for export that involve much of the improvements of the AIM-120D, such as third-party targeting datalinks, but not the improved engine (range is still likely somewhat better than C-7 thanks to improved steering economy). In any case, a Boeing spokesperson confirmed that while they are “pretty happy with that [the AIM-120C-8]”, there obviously are “other things” coming in the near future (read: the AIM-260 JATM). While commercial details made it impossible to include the upcoming weapon in the BAFO and Boeing can’t comment on potential weapons buys post-BAFO, it should be noted that the details known include a rather aggressive development timeline that will see the JATM overtake the AMRAAM in production in the mid-20’s, a decision by the US Navy to first integrate it on the F/A-18E/F Super Hornet, as well as the Finnish Air Force having expressed a wish to stay as close as possible to the standard of the main operator of any fighter they buy. Add these all together, and it starts to seem highly likely that by the time HX reaches FOC in 2030, in case the Super Hornet wins, the Finnish Air Force would be flying around with a mix of AIM-120C-8 and AIM-260. Still, for the time being the C-8 is what’s on offer, and Boeing claim to be “confident in their ability to defeat the high-end threats” presented in the HX-scenarios with it.

The Advanced Anti-Radiation Guided Missile – Extended Range (AARGM-ER) during captive carry tests. The missile is externally rather different from earlier members of the AGM-88 family in that it lacks the characteristic mid-body wings. The Navy is integrating AARGM-ER on the F/A-18E/F and EA-18G, and it will be compatible for integration of the F-35. Picture source: U.S. Navy photo

Another question is what the Growler will carry for their kinetic missions. Here Boeing was more careful, and declined to mention a weapon, but noted that the Growler-offer obviously include both kinetic and non-kinetic capabilities. Add the earlier mentioned FinAF wish to stay close to the US Navy configuration, and the answer is rather clear: a Finnish EA-18G Growler would use the AGM-88G AARGM-ER to kill stuff. Another key question for the Growler is obviously the low- and high-band jammers that weren’t part of the original DSCA-notification. Here again the timeline causes something of a headache for Boeing, as the USN will be flying with at least the NGJ-LB jammer before FOC for a Finnish Growler-fleet, but they can’t be released for export yet as they are still in development. However, the plan would, again referring to the fact that Finland does not want a unique Finnish standard, be for Finland to operate with whatever the main user employs, so expect to see some money set aside for the missing NGJ-pods if Finland gets the Growler. In the meantime, there is the option of using loaned pods (i.e. AN/ALQ-99) to get training started.

Our offer is complete for the Growler.

For Lockheed Martin the big news was that they were finally ready to talk numbers as well as industrial participation, and there were certainly positive news.

64 is the only number in our offer.

In what can only be described as a surprise to me (as well as to a number of other people), Lockheed Martin confirmed that their bid is built around 64 F-35A. The rest of their message was less surprisingly centred on the value of having a single-configuration fleet made up of the most advanced tactical aircraft currently found on the market. In short, having a single aircraft configuration means that everything from training, maintenance, logistics, and support equipment are easier to plan and manage (which makes it cheaper). This also translate into simpler tasking as every aircraft can fly every mission. Regarding the statement that the F-35 “does not require electronic warfare or AEW platforms as a fourth generation fighter”, it certainly is less dependent on force multipliers (all other things equal) than most other platforms out there, but there are certainly room for nuance here. There’s a reason why the USAF is investing in AEW platforms and expeditionary Growler squadrons, while at the same time quite a number of smaller air forces are able to fly fast jets independently without force multipliers (though as the phrase suggests, that solution isn’t optimal).

A Finnish Air Force F/A-18D Hornet sporting two AGM-158A JASSM heavy cruise missiles. The weapon has received almost mythical status in Finnish media, and while some of its reputation is exaggerated, there’s no denying it is a key capability. Source: Finnish Air Force FB

When it comes to weapon, Lockheed Martin doesn’t want to discuss what’s coming after the AIM-120C-8 AMRAAM, though it is safe to assume that the AIM-260 wouldn’t be far away here either (especially considering it is a Lockheed Martin product as opposed to the AIM-120). More interesting is the fact that Lockheed Martin put focus on how a stealthy aircraft is able to get closer to the target and as such is less reliant on expensive long-range weaponry. Coupled with the emphasise on the JSM as a “true fifth generation weapon”, and the fact that at no point has Lockheed Martin discussed the JASSM, the rumour mill is starting to ask a new question.

Is there a heavy cruise missile at all in Lockheed Martin’s best and final offer?

The JSM is a very nice weapon, and it marries extremely well with the F-35. However, the 550+ km range is a far cry from the 1,850+ km range of the AGM-158B-2 JASSM-ER which is cleared for export to Finland as part of both US offers, but as noted the JASSM has never been confirmed by Lockheed Martin. Granted the F-35A might be able to operate closer to its intended target than the Super Hornet, but I sincerely doubt the difference is in the 1,300+ km class. And the difference isn’t just in the range (the JSM in fact outranges the current AGM-158A, so it would still be a step up), but the JASSM carries a 450-kg penetrating warhead while the JSM comes with the significantly more tame 125-kg fragmentation one.

To put it bluntly – it might be a cruise missile, but it is not the capability the Finnish Air Force is looking for.

I’d be happy to be proven wrong, but it certainly feels a bit worrying, and it might explain another somewhat strange issue with the wording of Lockheed Martin, namely their stubborn refusal to talk about 64 aircraft without including the phrase “up to” before it. This prompted Iltalehti’s Lauri Nurmi to ask what exactly “up to 64” meant, which lead to the “only number in offer”-quote above. However, the answer also included disclaimers about final negotiations between selection and contract signing as well as exchange rates causing issues. These are certainly valid concerns, the original Finnish F/A-18C Hornet order was cut by three airframes compared to the offer due to the Finnish mark collapsing compared to the US dollar, and everyone expects some tweaking between the BAFO and the eventual contract.

Except for the fact that both Boeing and Saab has committed to 64 fighters, full stop.

Boeing was more than happy to offer some insight into how the exchange rate between euro and US dollar is handled in HX during our call yesterday, and provided the following quote:

The exchange rate utilized for the BAFO was provided to all candidates on the same day. The US competitors are utilizing the same exchange rate for USD vs Euro. With that same exchange rate we are able to provide 64 aircraft (50 Super Hornets and 14 Growler) along with a complete weapons and sustainment package. Also with that same exchange rate, we are able to clearly demonstrate that with our solution, we can fit within the O&S budget provided by the FDF

With regards to the eventual negotiations, Boeing was also confident enough to guarantee 64 fighters:

With our [Boeing’s] offer, should we be down-selected, there is room to negotiate items within the offer to better refine the solution, however, regardless of that, it is guaranteed that Finland will receive 64 aircraft along with a complete weapons and sustainment solution as a baseline.

Now, if there really is some rather significant holes in the F-35 package, such as the lack of a heavy cruise missile, it isn’t far-fetched to see a re-negotiation where say two aircraft are dropped and the cost is converted into JASSMs, as in all fairness the difference between 64 and 62 aircraft would in practice turn out to be rather minor. On the other hand, it is the BAFO package that will be evaluated in the war games that determine the winner, and it would be a high-risk gamble to go in with something else than the optimal solution to the needs of the FDF. A third possibility is that Lockheed Martin is believing that they won’t come out on top, and then it would look better to be able to walk away saying that they were able to fit 64 aircraft in their offer under the budget given, but that they lost on some more particularly Finnish requirement (defence budgets and numbers are rather global phenomenon and affect every future fighter programme in which they wish to compete, dispersed operations in snow doesn’t).

F-35A during HX Challenge last year. Source: Finnish Air Force FB

This is obviously pure speculation, but the insistence on talking about “up to 64” is somewhat puzzling. I am however happy that it turned out the number of fighters offered is serious, and as noted am overall positively surprised by this development (BAES and Dassault, take note). This was also the case with the industrial participation programme, which included guaranteed manufacturing of airframe components up to 2040 as well as external stealth panels within the same time frame. The number of guaranteed panels also exceed the Finnish requirement, meaning that Finland is guaranteed component production to some non-Finnish F-35s. I am not sure how well that will sit with countries that didn’t secure guaranteed production orders, but as noted in the case of the Super Hornet, from a Finnish point of view parts production can certainly be at least as good or even better than final assembly depending on the details of the offer. The key words here are “guaranteed” and “exceeding Finnish requirements”, and we got them, so I believe it is safe to assume the industrial participation package is at the very least adequate.

Much was also made about how the operating and sustainment costs are coming down, and how the aircraft is “living in single digit maintenance hours”. This is certainly good news for Lockheed Martin, as the operating budget will likely prove the toughest hurdle for the company in HX. Another proof of how the aircraft is maturing is the mission capable rate which now is the best of all USAF fast jets. However, while 76 % and pole position is nice, the truth is that the F-35 is a new aircraft largely still unburdened by combat usage. The fact that the F-16C-fleet reaches almost 74 % despite being on average 29 years old on the other hand puts the numbers in perspective. Other old and heavily worked USAF platforms are also hovering around the 70 %-mark, including the F-15C (72 %, 35 years on average) and F-15E (69 %, 27 years on average). As such, this particular metric might not be the huge win the F-35 is looking for, but it is still a nice step in the right direction, especially considering the unexpected engine shortage the aircraft suffered last year.

In general, as has been discussed earlier on the blog, the story of F-35 sustainment issues does feel like a two-steps-forward, one-step-back dance. The latest serious question mark surrounds the replacement of the company-controlled ALIS maintenance software with the government-owned ODIN, which has run into trouble. At the heart of recent discussions have been the extent to which Lockheed Martin is involved in the maintenance and logistics, and how to reach the milestone of “25 by 25”, meaning that by 2025 there would be a ~29,000 USD per flying hour support cost (the name comes from 29,000 USD in 2025 corresponding to 25,000 in base year 2012 dollars). Lockheed Martin’s proposal is more direct involvement and longer contracts, something the USAF isn’t too keen on. It should be noted that for the FDF involving industry to work very closely on maintenance isn’t a new issue, the whole Millog-idea in fact rests on doing business this way. However, government control is very much a key issue for the FDF, which has been seen for example in the other strategic procurement where the decision was made to have the FDF own the design of the Squadron 2020 vessels and then hire a yard to build them. Having a foreign defence company tell the FDF what data about their own aircraft they may (or may not) access might certainly be a red line, and with the US government facing issues renegotiating intellectual property rights, the odds of Finland managing better here are slim.

Stop, BAFO Time!

The Best and Final Offers (BAFO) for the HX tender are in, and from here onwards there’s no adjustments to the offers. Whatever the bidder has promised is what they are legally bound to deliver. Now we as well as the OEMs will just have to wait until the end of the year to hear who have been chosen. This also means that the embargo on disclosing details has been lifted, and the suppliers are free to share further information if they want to. Interestingly, some has chosen not to, though that may be telling in itself. Dassault sticks to their line and hasn’t even said whether they have responded to the BAFO-request, though the Finnish authorities have confirmed that they have received all five responses. Lockheed Martin published a short press release, as did Boeing, who followed up with casually dropping the number of fighters offered when asked about it. BAES and Saab in turn held full-blown media events. So what do we know?

The race is on

The big news is that LOGCOM was able to secure five offers, and apparently five serious ones. I struggle to remember when it would have happened that a country has managed to keep a fighter acquisition program fair and open enough that no-one has decided to drop out prematurely or not supply an offer at all (at least Norway, Denmark, Croatia, Slovakia, Germany, Belgium, Switzerland, Canada, Bulgaria, and India have held fighter tenders within the last few years, all of which have either led to some dropping out mid-way, not responding to quotations, the whole program being cancelled, the invitation to tender being rather narrow, or bids being disqualified). It’s hard to overestimate how significant this achievement is, and how important of a quality certificate it is to the process as a whole. In contrast to what some armchair analysts have argued, that some of the largest defence companies in the world – with business intelligence units to match and arguably somewhat cynical worldviews – believe that they have enough of a fair chance to win the competition that they are prepared to invest heavily into making their bids is a solid indication that the tendering process has been, and still is, open and undecided. This also feels reassuring to me as a taxpayer in ensuring that it really will be the best system offered to Finland that will end up in Finnish colours.

Then-colonel Keränen describing the HX decision making model during last year’s HX Challenge. Source: Own picture

A big congrats to LOGCOM, the Finnish Air Force, and the MoD for this achievement!

numbers

The number game is interesting. At their press conference, BAES pointed out that they wouldn’t disclose the numbers as all bids weren’t confirmed to have been returned, as that apparently was the wish of the MoD. This sounded logical enough, until the bids were confirmed by the MoD to all have been returned, and BAES still declined to release any numbers. The full quote by a Eurofighter spokesperson was:

We are confident our offer will deliver sufficient Eurofighter aircraft to meet the challenge set by Finland to fully replace its existing capability. This is a competitive process and we will release further details of our offer as appropriate.

This was echoed by Dassault, who told Finnish daily Helsingin Sanomat that the MoD had not given permission to release numbers. At the same time, Boeing was happily telling anyone asking that their offer consisted of 50 F/A-18E Super Hornets and 14 EA-18G Growler, i.e. matching the original 57 F/A-18C Hornet and 7 F/A-18D Hornet Finland bought in the 90’s. A bit later Lockheed Martin confirmed that they had sent in an offer that included:

F-35A fighters as well as a maintenance solution

Saab in turn held a press conference on Friday, which included the news that they were to supply 64 JAS 39E Gripen as well as 2 GlobalEye AEW&C aircraft in case they got chosen.

Those who have been watching the process closely will note that it is the two producers who have been expected to sport the cheapest fighters that have disclosed their numbers, and both match the current 64 fighter figure (or rather, the original 64 fighter, as Finland has lost two Hornets in accidents). Saab was also happy to rub it in, noting that while there was no requirement for a set number of aircraft, there was indeed:

Floating around a general expectation in Finland [of 64 fighters]

I’m not sure there’s quite an expectation for 64 fighters, as a matter of fact I personally expected both Boeing and Saab to land in the 60-64 range, but there’s certainly an expectation for almost 64. This stems from years of writings, interviews, and podcasts in which both the HX programme leadership as well as the senior Air Force personnel commenting on the issue has noted that we need roughly the same number of fighters as A) Finland is still the same size as it was in 1995, B) the speed of the fighters are roughly the same as it was back then, and C) the range of the weapons is roughly the same as it was back then. Yes, on a tactical level supercruise and Meteor provide significant increases, but when it comes to the operational or strategic level those are rather minor changes. There’s still 390,905 km² that needs to be defended.

As the Finnish Air Force demonstrated last year when it surged 32 Hornets for a total of eight four-ship formations (out of a fleet of 62), getting coverage really needs numbers. Even in the best of scenarios, the classic three-to-one ratio is a handy rule-of-thumb for prolonged operations. Let’s imagine a snapshot of a wartime scenario:

  • We are a few days into the war, the operational tempo is still very high as the first wave of the enemy offensive is still ongoing,
  • The Finnish Air Force has lost a total of 16 aircraft, including those shot down and damaged in combat, as well as those damaged and destroyed on the ground in opening strikes,
  • The Air Force currently has one formation airborne as part of an air defence tasking in the south-east,
  • A second formation is on the ground in dispersed locations in the northern parts of the country, ready to take-off and either relieve the southern formation once it needs to return to base, or to intercept enemies heading north,
  • Four aircraft are currently returning from a bombing raid on enemy advancing mechanised formations and the bridges they rely on for their movements,
  • Two aircraft are over the northern Baltic Sea, trying to create an accurate maritime situational picture (i.e. locating enemy vessels) as well as checking for a high-value ISR-platform that is known to occasionally operate out of Kaliningrad,
  • Two aircraft are being prepared with heavy cruise missiles for a deep strike mission against enemy rail infrastructure,
  • For each active aircraft there are two others that are either the process of refuelling, being maintained, transferring between dispersed bases, or simply standing on the ground allowing the pilots some rest between missions.

You can obviously argue the details, but that is a scenario that is possible with 64 aircraft (16 active in the missions mentioned, 32 in reserve, 16 lost). If you start out with 40 aircraft, you will quickly run into some “interesting” numbers:

  • If you’ve lost 16 aircraft, that’s 40% of your force instead of 25% as in the 64 aircraft-scenario. To match 25% losses, you can only afford to lose 10 fighters,
  • Even if you only lose 25% of the fleet, that still leaves you with just 30 aircraft, of which 10 are available. If you still want one four-ship in the air and one on the ground ready to scramble to perform air defence tasks, that leaves a grand total of *two* aircraft for other missions. Not two formations, but two aircraft.

That’s the tyranny of the numbers, and while they certainly can be mitigated (minimise own losses, have spare pilots on the dispersed bases to avoid rest periods, increase spares availability and maintenance capability on dispersed locations, …) there’s really no way around them. And notable is that during exercise Ruska 20, the opening scenario based on a released map featured no less than thirteen four-ships, one three-ship, and a two-ship, all operating in an area well below half of the country’s surface area (as well as what presumably is a Swedish Hercules soloing straight down through the battlespace). Based on the same picture, my guess is that five of those formations might have been REDFOR, leaving 37 BLUFOR fighters airborne simultaneously to defend the airspace between Rovaniemi and Tampere.

Kan vara en bild av karta

The big question for HX then is whether the three manufacturers that are withholding their numbers are doing so because 58 would look bad when someone else has 64 (and that 9% difference in my opinion is still one where it might be possible to make a case for better overall capability thanks to higher availability and lower losses), or whether it is because the numbers offered are outrageously low (the threshold is somewhere in the low-fifties in my book). It is somewhat surprising – and honestly, rather worrying – that three out of five doesn’t want to talk numbers.

Industrial participation
In late April the Italian Air Force Baltic Air Policing detachment became the first to bring the F-35A to perform the QRA-mission over the Gulf of Finland. Picture source: Eesti Õhuvägi FB

As discussed in an earlier post, the Lockheed Martin-team doesn’t want to discuss their industrial cooperation package in detail, though in their press release they have gone into some further details:

The final offer includes many opportunities for the Finnish defense industry related to the direct manufacture and maintenance of the F-35 that have not been offered before.

“The F-35 offers Finnish industry high-tech jobs that none of our competitors can offer,” says Bridget Lauderdale, director of the F-35 program. “Production collaboration would continue for more than 20 years and F-35 maintenance collaboration until the 2050s. Finland would maintain its own F-35 fighters and also support the global F-35 fleet by manufacturing significant aircraft parts. ”

Outside of F-35 production, Lockheed Martin would build partnerships with Finnish companies and universities to develop and promote defense cooperation in indirect industrial cooperation projects.

This is still vague, but better than what Dassault have been able to produce when it comes to disclosing information about their offer. Boeing’s latest press release is in fact even weaker than L-M’s, though they can at least lean on the fact that last time around L-M was thrown out of the competition due to an inadequate IP-offer while Boeing went on to manage a successful IP-program for the legacy-Hornets. Still, their statement is honestly anaemic:

Boeing’s offer also include an extensive industrial cooperation program that offers significant long-term opportunities for Finnish industry.

On to better news: Saab and BAES are happy to discuss details. Both are promising final assembly lines of both engines and airframes in Finland, as well significant other measures. BAES description includes several details:

The opportunity to perform final assembly of the aircraft including EJ200 engine build and maintenance; a partnership in the future development of primary sensors, including technical transfer and data analytic tools and techniques for mission data generation and electronic warfare; the transfer of extensive maintenance, repair, overhaul capability. And, the transfer of data and authority to make upgrades to the aircraft.

In addition, we are proposing projects that enable transfer and ongoing cooperation in Cyber Security which will build resilience in military assets and networks and Space technologies. And a suite of Research and development projects across a broad range of technologies that is being spearheaded by our partner MBDA. These benefit Finnish industry, including small medium enterprises, and Finnish academia.

The jobs that we are offering as a result are high quality, long term jobs equating to over 20 million man hours over 30 years, with the knock on benefit to the wider economy driving this figure even higher, and I am proud to be part of the team submitting this offer into Finland today.

Alex Zino of Rolls-Royce was also able to produce some numbers related to the impact of the engine production line to show that it wasn’t just about unpacking crates being shipped in from the UK: the tech transfer and engine production would result in a combined workload of approximately 1.5 million man hours over 40 years.

Saab on the other hand has earlier talked about approximately 10,000 workyears. A quick back-of-the-enveloped calculation gives the number of jobs on average as something like in the low three-hundreds for Saab and in the high three-hundreds for BAES (using approximately 1,700 hours per year as a benchmark), but there’s obviously significant uncertainties in how exactly the numbers have been calculated. To put it into perspective, this number corresponds to over a third of the whole of INSTA Group, the second major player in Finnish defence industry after Patria.

In the case of BAES, perhaps the single-most interesting piece of technology transfer is the invitation to join the ECRS Mk2 development programme, which promises to be significant both from a military as well as technological point of view. Despite the ECRS standing for European Common Radar System, it is in fact heavily led by the UK for the time being, presumably providing relatively much room for bringing foreign partners aboard compared to some other joint-systems shared by all four core countries. Another key part is obviously the continued discussion on sovereign mission data capability, where the turnaround times promised are in a completely different league from any US offers.

Based on the Royal Air Force’s extensive operational experience, we will establish a sovereign mission data capability to rapidly update the weapon system with the latest threat identification and countermeasure tactics, sortie-by-sortie, if necessary. Mission data is the life blood of any modern combat system, and security of supply is more than repairing physical components.

The RAF describe this as being how the force currently operate in the Middle East, with new threats and emitters being included in the aircraft libraries from one sortie to the other.

Saab is on the other hand planning on creating a System Centre, which will be responsible both for tactics development as well as the fleet management and data part of things. In essence, this would likely handle the same things as the BAES offered sovereign mission data capability, while also providing support to the FDF LOGCOM and the Air Combat Centre of Satakunta Air Command, all under one (literal of figurative?) roof.

weapons

Again, to reiterate Dassault isn’t saying anything, Lockheed Martin is saying something, Boeing is promising to tell more in the future, and Saab and BAES is giving their lists to everyone asking.

As we know from the DSCA requests both the F-35 and the Super Hornet would bring JDAMs (HE as well as bunker buster rounds), GBU-53/B SDB II’s small glide bombs, AGM-154C-1 JSOW stealthy glide weapons with a secondary anti-ship capability, AGM-158B-2 JASSM-ER very long-range heavy cruise missiles, and AIM-9X short-range air-to-air missiles. Lockheed Martin now confirms that the offer also include the AIM-120 AMRAAM in an unspecified version as well as the JSM (Joint Strike Missile). Neither of these are particularly unexpected, but the JSM offers a nifty capability in its dual use against sea- and ground-targets, as well as passive seeker and possibility of internal carriage in the F-35, as briefly discussed last time around. The expectation is also that there will be a second DSCA-request for undisclosed versions of the AGM-88 signal-seeking missile (likely the AGM-88E AARGM) as well as for AIM-120 AMRAAMs for Boeing, though these are unconfirmed for the time being.

BAES’s bid would bring what the Royal Air Force Chief of the Air Staff, Air Chief Marshal Sir Mike Wigston KCB CBE ADC, describe as the full suite of weapons employed by the RAF – including the upcoming SPEAR 3 light cruise missile as well as the SPEAR EW version, a loitering stand-in jammer. However, curiously absent from the discussion was the Brimstone anti-tank missile, which has been a staple of the Operation Shader, RAF’s anti-ISIS campaign. However, the other two weapons that has been heavily in use in the Middle East by RAF Tornados and Typhoons are included in the list provided – namely the Storm Shadow heavy cruise missile and the Paveway IV guided bomb. The later is a 227-kg guided bomb with dual-mode anti-jamming GPS/INS as well as laser guidance, meaning that it can be used against moving targets. The weapon comes with both HE and penetrator warheads, though the physics dictate that the penetrator isn’t as efficient as those of heavier weapons. From a Finnish point of view, the Brimstone is likely something of a nice-to-have, as with both the SPEAR 3 and the Paveway IV there isn’t really any target that can’t be countered (although in certain scenarios the SPEAR 3 might be overkill while the Paveway IV might require release inconveniently close. Here the GBU-53/B SDB II has an edge thanks to its gliding properties). However, these missions (read: striking vehicles in massed armoured formations) are likely not the mission sets that are of primarily concern to the Finnish Air Force. Perhaps the most interesting detail would be the change from AIM-9X to ASRAAM as the short-range air-to-air missile of the Finnish Air Force. The ASRAAM, as opposed to both IRIST-T and AIM-9X, prioritise range over manoeuvrability, and while the jury is still out on which is more important by the time (or rather: if) you get into a short-range fight, the ability to fire missiles with passive IIR-seekers out to near-AMRAAM ranges is certainly interesting, especially in case of a heavily degraded EW-environment or against stealthy targets.

Saab showed of a large scale model of Gripen E in Finnish colours equipped with AGM-158 JASSM and RBS 15 at Kuopio Air Show in 2016. Now that particular options seems to be off the table. Source: Own picture

Saab’s offer in turn include at least IRIS-T and Meteor in the air-to-air role. This is no surprise, as these are the current staples on the Swedish JAS 39C/D Gripen-fleet, and have proved rather popular in Northern Europe in general. More interesting was the inclusion of SPEAR 3 (the EW-variant is not included, as Saab offers its own LADM that is currently in development and aiming for a similar role), as well as the decision to go with the KEPD 350/Taurus as their heavy cruise missile. Saab started out their HX-campaign actively pushing the fact that they can integrate any weapon they need, with the same message being repeated this week. It certainly might be the case, but somehow they still seemingly ended up basically offering MBDA’s portfolio of air-launched weaponry (complemented by Diehl’s IRIS-T and their own KEPD 350).

While it is extremely difficult to judge the true capabilities of the three heavy cruise missiles on offer, it remains a fact that KEPD 350 lost the Finnish evaluation for a heavy cruise missile against the baseline AGM-158A JASSM the last time around. And this time, it is up against the significantly improved AGM-158B-2 JASSM-ER (formerly known as AGM-158D JASSM-XR). Again, it is hard to say much for certain, the KEPD 350 has also beaten the JASSM and Storm Shadow in certain competitions, but the decision seems strange on paper. There is a new version in the form of the Taurus K-2 in the pipeline, though that is still in development and the improvements seem rather modest compared to the step from AGM-158A to -158B-2.

Saab’s heavy anti-ship missile RBS 15 Gungnir (based on their Mk 4-version of the venerable weapon) is obviously available as it is a key Swedish requirement, but it seems to be left out of at least this original weapons package. On the other hand, it is safe to assume that there are some smart bombs (likely the GBU-49 Enhanced Paveway II 227 kg GPS/INS and laser-guided bomb, as well as either GBU-39 SDB or the GBU-53/B SDB II small glide bombs) making up the lower-end of the package as these have featured rather heavily in both US as well as the BAES packages.

The most impressive part of Saab’s weapons package was the statement that the value of the weapons are “>20 % of the proposal price relating to Gripen”. At first glance this looks like 0.2 x 9.0 Bn EUR = 1.8 Bn EUR, which certainly would provide for a massive number of weapons. However, upon looking at the fine print, it does seem like at least the GlobalEye-portion of the offer is left out of the starting number, as may certain other items (Indirect industrial participation? Training?). I have reached out to Saab for a comment, and will update once I get their answer. Edit 3 May 2021: Magnus Skogberg confirmed that the value of the weapons “is above 15 % of the value of the whole offer (i.e. including Globaleye, IP, etc.)”. Presumably that means above approximately 1.35 Bn Eur. In either case, the weapons package does seem to be a sizeable one, though exactly how large is an open question (as a benchmark, the DSCA-clearances were for roughly 300 guided bombs, 150 JSM/JSOW, and 200 JASSM-ER, though obviously there’s no guarantee that the maximum number of weapons will be sought).

While the lack of large stocks for European weapons compared to US ones is one of the strongest arguments for a US fighter, the importance of this argument obviously would decrease with the size of the Finnish Air Force’s weapons stocks increasing.

The two-seaters

What became evident is that the days of traditional type conversion being flown in two-seaters seems to be on the way out for the Finnish Air Force. The Boeing offer did not feature a single vanilla-two-seater, with all fourteen two-seaters being Growlers. Saab followed suite and went for 64 single-seat JAS 39E despite their original 2018 proposal having been split between 12 JAS 39F two-seater and 52 JAS 39E. Eurofighter has earlier seemed lukewarm to the idea of including two-seaters, while F-35 obviously does not come in a two-seat model.

For Boeing the decision to leave out the F/A-18F Super Hornets is somewhat surprising as apparently still by the time the DSCA-requests were made late last year the option to include up to eight twin-seaters was still there. A Boeing contact with insight into current Finnish Air Force training procedures notes that despite the lack of flight controls in the backseat of a Growler, the flight characteristics and ability to bring along a backseater means that their use in peacetime training is seen as “quite reasonable”. However, it is obviously down to the Air Force whether they want to use it in that role.

For Saab, the decision was even more of a surprise. As noted, in the last proposal they were allowed to comment on they saw quite a large role for the two-seaters. In the words of Magnus Skogberg, program director for Saab’s HX bid:

Often there are other drivers for and needs of a two-seat aircraft configuration that, in combination with the more traditional training-related benefits, makes it relevant to procure two-seat fighters. […] Gripen F with its two seats, naturally provides additional flexibility to handle very advanced missions where it may be advantageous to have an additional pilot or operator on-board. Examples are Electronic Warfare Officer, Mission Commander and/or a Weapon System Officer in the rear-seat.

This was how it sounded back in March 2019, despite the GlobalEye being well and truly an established part of their bid already back then. In this week’s press briefing, the company took a strong stance that the 39E with its internal EW-suite, EAJP-pod, and LADM-decoys can handle the SEAD-mission without the need for specialised platforms – or, presumably, dedicated crewmembers. Some commentators have pointed to the ability to direct the Gripen’s EW-suite from the GlobalEye through the datalink, though I have not seen that feature mentioned in any of Saab’s material and it would seem to be a less flexible solution compared to formations having their own dedicated EW-operator (in essence having fourteen Growlers for 50 fighters means every four-ship out there could have their own EW-escort).

While it is difficult to say exactly what has caused this change of hearts over at Saab (the wish to harmonize their bid with the Swedish Air Force force structure probably played a part), it shows that the multi-staged HX-process works in that the offers have been tailored and changed even in rather dramatic fashion since the first round of RFPs. What Saab did mention, however, is that there is still included an option for 39F in the bid, presumably either in the form of buying additional airframes or converting a number of the 39E offered to 39F. However, as this bid is based on Saab’s best understanding of what the Finnish Air Force wants following years of discussion, I personally find it highly unlikely that the option would be used.

The large number of Growlers on the other hand is very significant, and I will admit I did not expect 14 aircraft to fit inside the budget. Keen readers will have noted that there wasn’t as many NGJ-MB jammers in the request, these were limited to eight sets. However, while the NGJ is at the heart of the Growler’s electronic attack and jamming capability, a key part of the situational awareness in fact comes from internal sensors, including the the wingtip ALQ-218 RF Receivers. These tell the pilot not only what is out there, but also where it is, and the crew can then decide what to do with that information, whether to engage with weapons, avoid, or jam in case they have brought along their NGJ. As such the value of including Growlers as part of normal formations is significant, both for air-to-air and air-to-ground missions. The additional value of a backseater also means that you have an extra person who isn’t busy flying the aircraft, and who potentially could, I don’t know, perhaps function as an “Electronic Warfare Officer, Mission Commander and/or a Weapon System Officer”.

I have mentioned it before, but it continues to be an important point in the greater picture that in my opinion is brought up often enough: the value of having the unique capabilities that the EA-18G Growler brings does not limit themselves to wartime, but they would give our politicians quite a few more options on the escalation ladder prior to full-blown war. This includes both better situational awareness, as well as the ability to meet e.g. GPS-jamming with non-kinetic means that still can hurt hostile operations without causing damage to adversary equipment or losses to their personnel. Another possibility is the ability to support international operations with a key high-profile and high-demand (but internationally rare) capability, and one that require a relative small footprint in and risks for FDF personnel.

The ability of Boeing to offer 14 Growlers and still reach 64 fighters in total is an extremely strong card on their part, although I do have to caution that the crucial question of the future of the Super Hornet-family past 2040 is still unanswered.