Smooth Stones and Lightning

Finnish defence discussions have a few topics that quickly tend to derail into a somewhat unhealthy fandom, but few does so more readily than anything that has to do with the Ilmatorjuntaohjus 96, or Buk M1 as it is known internationally.

The Buk M1 had a rather short career in Finnish service, as the FDF quickly realised that having a system designed by the potential enemy might not be the best idea when it comes to such a technical arm as air defence – there’s a reason anything related to electronic warfare, radars, missiles, or SEAD/DEAD usually are among the most well-guarded secrets of any nation. The search for a replacement saw the NASAMS and SAMP/T face off, with the NASAMS taking home the price and becoming the new top-dog in Finnish ground-based air defences.

Let’s be clear, the NASAMS is simply a better air defence system than the Buk it replaced, there really is no discussion. However, as often is the case on the internet, discussions on capability has a tendency to be reduced to a top trumps comparison of specifications that are easy to describe with numerical values. And the top ceiling of the Buk is higher than that of the NASAMS.

Exactly how much of a difference is open to discussion. Most sources quote the ceiling of the NASAMS at around 10,000 meters, while others speak of 15,000 meters. The Buk M1 in turn is often quoted as going up to 22,000 meters (though some give a rather lower one, e.g. 12,000 meters). I personally have a hard time understanding the nostalgia for the semi-active radar homing 9M38 M1-missile that had turned 25 by the time conscript training in Finland stopped (something that does not mean it left the wartime forces at that time) and is well over 40 years old by now (I mean, if we really wanted something with altitude, we’d start shopping around on the second-hand market for the impressive S-200VE with it’s 29,000 meter ceiling and 240 km range…). It also deserves to be said that the F/A-18 Hornet-fleet is more than capable of taking on targets that attempt to sneakily fly above the NASAMS ceiling.

Still, air defence usually is best served by a layered approach, and it has been an ambition for the FDF to get back into the ground-based high-altitude air defence-game for quite some time. In 2018 an RFI was issued, which was followed up with an RFQ to five companies in 2020. The plan at that stage was to finalise the procurement before the end of 2022, but that schedule was adjusted last year – partly due to the pandemic having caused issues.

A Stunner-missile shooting away towards the clouds that are hanging over Palmachim Air Base in Israel. The Stunner is perhaps the best endoatmospheric interceptor in the world, and a surprise top-two in the race for a new Finnish GBAD-system. Source: United States Missile Defense Agency via Wikimedia Commons

However, last week we were treated to a surprise down-select, and it provided a rather surprising outcome. Gone were not only Diehl and always-bridesmaid-never-the-bride MBDA who keeps having a hard time securing Finnish contracts, but also favourite Kongsberg Defence and Aerospace and their NASAMS-ER. Instead we were left with two offers, both from Israel: the David’s Sling of Rafael and the BARAK MX of IAI. Neither system is bad, in fact they are both extremely competent according to all available public sources, but for the Finnish procurement there has been a feeling that they are simply too competent – and by extension too costly. An outspoken goal with the current procurement has been to get enough batteries to provide geographical coverage (it is easy to imagine coverage increasing through increased range, but for air defence that is to some extent a faulty line of reasoning as the difference in effective area coverage between two batteries with differently ranged missiles is rather small compared to what can be achieved through the ability to place more batteries in different key locations – remember that as opposed to e.g. anti-tank weapons the targets for the air defences are also constantly moving around and covering significant distances, at any point in time during which they can run into your air defences).

However, it is now evident that the FDF was more ambitious than just getting an average solution. Considering the timing, you would be forgiven to imagine the FDF having changed the scope somewhat following the renewed Russian invasion of Ukraine. The force however denies that that would be case, and states that throughout the program capability has been the primary concern, which do makes you feel a bit sad for Diehl who tried to take on missile systems that sport some of the most advanced endoatmospheric interceptors on the market with their IRIST-T SLM.

Indian destroyer INS Kolkata firing a Barak 8 missile during the initial trials of the system back in 2015. Source: Indian Navy via Wikimedia Commons

As mentioned the two systems left in the running are the BARAK MX from IAI and the David’s Sling of Rafael. The BARAK MX traces its roots to the ship-based family of BARAK 8-missiles. These originally kicked off as a joint Israeli-Indian project, though nowadays the missile family has forked off into two distinct national lines of Israeli and Indian versions respectively. The BARAK MX (with MX standing for ‘Mix’) is the Israeli land-based version and can hold a number of different missiles. While in Israeli service the BARAK is only used as a shipboard weapon, the weapon has been exported in land-based versions to a limited number of countries, best known of which is Azerbaijan.

The Azeri setup comes with both truck-mounted TELs and palletized firing units, truck-mounted BMCs (BARAK Management Centre, the solution is possibly containerised but I’m unsure based on the available pictures. Both container and truck-mounted versions are offered), and ELTA’s palletized ELM-2288 AD-STAR radars. There are also reports that Azerbaijan have acquired the ELM-2080 Green Pine radar (which sports one of the cooler code names around, more on this one shortly). The layout is rather conventional for a modern system. Everything goes on wheeled trucks (unless you want a hardened BMC), and when you arrive at your preferred location the trucks either point their missiles towards the sky or deploy their palletized missiles racks, both setups of which can handle eight missiles ready to fire. The radar is set up and everything is connected to the BMC which is the brains of the systems. Here it is also possible to connect the system to other sensors, to ensure that you have a situational picture that is up to date and allowing e.g. for ambushing enemy aircraft by turning on the fire-control radar only once the enemy target is within range.

The BARAK MX TELs used by the Azerbaijani forces during a parade in Baku. Source: Azerbaijan presidential office via Wikimedia Commons

There are no details about the Finnish offer besides the MX being paired with an ELTA-radar. The ELM-2288 AD-STAR in some version is certainly the expected candidate, though other details are likely to differ compared to the Azeri setup. When contacted, IAI kindly declined to comment due to the sensitivity of the acquisition program, so there is some guesswork involved here. An interesting detail is that the Finnish Defence Forces refer to the missile on offer as the LRAD ER. IAI in turn talk about having three different missiles: the point-defence MRAD (30 km range), the medium-range LRAD (70 km), and the booster-equipped ER (150 km range). The missiles are hot-launched, but still described as having a “low launch signature” – YMMV. When I contacted FDF they confirmed that LRAD ER is one missile and not an offer that include both LRAD- and ER-missiles. I tried to ask IAI if they have more than three missiles integrated – i.e. if the LRAD ER would be a new-version of the LRAD – but they referred only to three above. As the ER is an LRAD with a booster (think they same principle as the Aster-family), I tend to believe that the Finnish designation refer to the ER. This performance is more or less on par with the 160 km range PAC-2 GEM-T missile of the Patriot system (Robot 103A in Swedish service). However, there are two key difference in that the BARAK is equipped with an active radar seeker (i.e. the missile carries its own radar and will continue to home on to the target even if the main radar goes silent) while the PAC-2 is a semi-active radar homing missile (i.e. it relies on the ground radar lighting up the target). The second important difference is that while the PAC-2 is a single-stage missile (i.e. it burns until it no longer does so, and then it coasts along until running out of speed), the BARAK ER is in effect a two-stage three-pulse missile in that we first have the booster kicking off the whole thing, and the LRAD missile mounted on top of the booster then has a dubble-pulse engine, giving significantly more energy during the later stages of the interception compared to traditional missiles. The BARAK also has a vertical launch which gives the ability to cover 360°, though in practice the Patriot batteries are usually deployed so as to minimize the impact of their ‘blind’ sector – it is rare to find locations where you can be jumped on from any direction, unless you deploy on top of the highest hill in the area, and then everyone will see you.

There are reports that the BARAK MX took part in the 2020 Nagorno-Karabakh war. Few Armenien air losses were documented during the conflict, none of which are attributed to the system. However, there are persistent reporting that during the final stage of the conflict Armenia would have fired a single 9M723 Iskander against the Azeri capital of Baku, and this would have been intercepted by a BARAK. The claims are rightly questioned, as to the best of my knowledge all reporting of the incident go back to a single story by a Turkish journalist, and there have been no independent verification. Verification of successful intercepts of ballistic missiles are also notoriously hard to make even in the best of conditions, and it is unclear whether Azerbaijan actually has the ER with its enhanced theatre-ballistic missile defence (TBMD or BMD for short) capability in service or whether it is relying on the shorter-legged missiles. As such, I would be careful with the ‘Combat Proven’ label for now, though the missile has since successfully intercepted ballistic missiles in trials.

But wait a minute, readers of the blog will say. Finland wasn’t supposed to get a BMD capability!

The answer is “Yes” (and just wait until you see the other guy).

Back in 2019, Finnish Chief of Defence general Timo Kivinen gave the following statement to the Finnish newspaper Kaleva:

No minor country has the resources to develop and maintain an active missile defence system. […] Finland has a passive missile defence system, based on an analysed and identified threat. The concept is based on protection, movement, and decentralized operations.

This statement was by no means unique, but rather one in the line of statements to media and in press releases where the same principle has been stated time and time again. Finland does not have any interest in ballistic missile defence through shooting down incoming missiles. So what is up with that, has the FDF changed priorities now under influence from the war in Ukraine and the liberal amount of missiles fired?

(Note that while that’s a serious number of missiles quoted in the tweet below, there has also been a serious number of airstrikes during the war, and of the ones mentioned only the Iskanders and Tochkas are ballistic missiles)

The short answer is “No”. The longer answer is still the same as it always has been:

The ability to defeat ballistic missiles has not been one of the project’s objectives. We have compared the performance of different systems against traditional targets.

In short, the BARAK ER and David’s Sling with its Stunner missile are simply better at killing aircraft and cruise missiles than the competition, and that’s why they are shortlisted.

But there will be an Iskander-killing capability, right?

Not necessarily. Having a missile capable of hitting the incoming ballistic missile is an important step, but only part of the equation. Since the target is ridiculously quick, getting pre-warning is key (remember the Green Pine-radar rumoured to have gone to Azerbaijan? That’s a radar that is dedicated to long range detection and acquisition of TBMs, exactly the kind of additional – and very expensive – sensor you need if you want to enter the BMD-game for real). That in turn means you want to know where it comes from so you can set up you sensors to detect it at optimal range (see excellent linked thread below by Simon Petersen, who as opposed to yours truly actually is a professional when it comes to these kinds of things), and that is a very different setup of sensors and deployment patterns compared to if you are planning on taking on aircraft or helicopters. This is also a key reason why BMD makes more sense for Sweden than for Finland, as the obvious firing location for Iskanders heading toward Sweden is from the rather limited direction of Kaliningrad, while Finland has a rather large sector of potential enemy TBM firing locations.

So, when the FDF is buying a BMD-capable system and still says they aren’t aiming for a BMD-capability, that’s what they mean. The missile might be there, and if someone is dropping an Iskander on their block they might be able to kill it. But if it is headed to the next district you are probably out of luck.

But if you were impressed by the BARAK MX (and you probably should be), wait until you see what Rafael brings to the table.

David’s Sling is system that resemble a Patriot battery that has decided to enter the near-vertical launch game. It is jointly developed with Raytheon, and is very different from, well, most everything found on the market.

The two-stage missile called Stunner has a distinct ‘dolphin-nose’ look, using the asymmetry to manoeuvre and to fit several sensors. Good manoeuvrability is a must, since the missile is a hit-to-kill one. This means that as opposed to most air defence missiles which flies close to their targets and then detonate to create a cloud of shrapnel, the Stunner will ram into whatever it is targeting at high speed. This is obviously a sure-fire way to bring down most everything, but also a very unforgiving way of operating in that a near-miss doesn’t give you much except disturbed air. To achieve the desired accuracy, the Stunner is a two-stage three-pulse missile as well, with the third pulse providing the speed needed to manoeuvre at the final stages of the intercept. The guidance is provided by several different modes of tracking, including an active radar seeker as well as a multi-function electro-optical sensor sporting IIR-capability. The batteries in Israeli service feature the ELM-2084 MMR S-band radar, which is a step up in capability from the ELM-2288 AD-STAR of the BARAK MX. Of interest, one of the smaller members of the MMR-family is the Compact-Multi Mission Radar ELM-2311 C-MMR which Finland bought and received last year for the counter-artillery role (though they do offer a secondary air-surveillance capability as well). The missiles are transported around on a trailer-type TEL (which might or might not be called a MEL, depending on your level of geekiness), which apparently sports twelve missiles ready to launch. During the test firings the combat management centre seemed to be a containerised solution, and while it certainly seems likely there’s really no telling for sure whether that is the solution used for operational batteries.

As opposed to the BARAK MX, David’s Sling is in Israeli service. The primary purpose is as the mid-tire defence against incoming missiles and heavy rockets, sorting between the short-range Iron Dome and the larger Arrow. Despite the original design purpose being solidly in the BMD-role, the weapon is obviously more than capable of bringing down more conventional targets as well. The performance is largely classified, with some sources stating the range at 160+ km (note that corresponds to a very round “above 100 miles”) while others give 300 km as the maximum. In any case, it is safe to say the range is longer than BARAK ER. An interesting detail is that the missile is being looked at as a possible replacement for/alternative to PAC-3 missiles for the Patriot under the PAAC-4 program, where the additional ‘A’ stands for ‘Affordable’. That is an interesting notion, as while the batteries themselves certainly cost, the munitions add up as well. It would be easy to imagine the Stunner as being a prohibitively expensive missile due to its performance, highly specialised role, and fancy sensors, but apparently that isn’t the case (though in air defence, “cheap” doesn’t equal “small amounts of money”). An interesting detail is that the US so far has been reluctant to let Israel export it directly, meaning that this offer certainly shows the trust and importance Washington places in Finland and the FDF. So far the only almost-confirmed export customer is Poland, which is planning to acquire it for their Wisła-program. The initial package will however sport the PAC-3 MSE, and the program has ran into some issues as the cost of integration into the Polish C3-system has caused the budget to expand considerably compared to e.g. the Swedish Patriot-order.

A really interesting side-track is that Israel, who by the way also happens to be a serious F-35-user, has test-flown the Stunner without the booster on an F-16. The possibility of having a highly-manoeuvrable air-to-air missile with multi-seeker capability is certainly interesting when going after small and/or stealthy targets such as cruise missiles, drones, and Su-57s. While so far no decision has been made  to integrate the Stunner on the F-35 and the FDF is currently not looking at the possibility of acquiring a joint-use GBAD/A2A-missile in the same way as the AIM-120 AMRAAM currently is being operated, it is certainly not something that is a negative in the books for Rafael’s offering. It certainly would be an interesting development, and let’s remember that the decision on what to get after the AIM-120C-8 AMRAAM is still open for the FinAF.

So where does that leave us? Both systems are reportedly easy to integrate into legacy systems, are already in operational service, and sport performance that would propel FDF GBAD into a world-class integrated air defence system on all altitudes and against all conventional targets (drones, cruise missiles, helicopters, aircraft). The big question is whether there is the budget to acquire enough batteries and missiles? So far the FDF isn’t telling, but in an interview the budget is described as “significant but below the threshold of strategic acquisitions”. Considering the Squadron 2020 program was a strategic program and came in at an original budget of 1.2 Bn EUR, a safe guess is that we are talking about several hundred million euros, but below a billion. As a comparison, that would be below the Swedish Patriot-acquisition which is valued at approximately 1.1 Bn EUR, though that did include modernisations to the general sensors and C3-networks. The Swedish program include two battalions of two batteries each, both capable of independent operations but mainly used together to protect a single area. Depending on the Finnish doctrine and pairings with other air defence systems, something similar might be able to fit inside the Finnish budget, but that is largely down to how much other stuff will have to be paid for. As is well-known, the so-called ITSUKO which deals with the high-altitude capability is part of the larger air-defence framework that include a number of other projects, and as such the budget for the batteries themselves might be surprisingly similar for Finland and Sweden. If I had to guess, we will see the BARAK MX take home this one based on the versatility and the smaller footprint leading to greater mobility, but David’s Sling is certainly an impressive system and as we have seen performance matters in this one. It will be highly interesting to see what the next year brings for ITSUKO.

Finnish Land Ceptor – MBDA Aiming High in ITSUKO

After half a decade of talking fighters under the auspice of the HX-programme, much has already been said. Which meant that ironically enough, the most interesting piece of kit at the Kaivari 21 air show wasn’t anything flying, but a green Volvo truck. Meet the Finnish Land Ceptor.

The TEL of the Finnish Land Ceptor in a firing position by the sea at Kaivari 21 with standard-length CAMM missiles. Picture courtesy of MBDA / Paavo Pykäläinen

MBDA was shortlisted in the high-altitude effort of ITSUKO last year, a designation which I believe comes from Ilmatorjunnan suorituskyvyn kehittämisohjelma (literally “the development programme for the capabilities of the ground-based air defences). At the time I wrote that I felt they would have a hard time in face of the competition. However, there certainly is no lack of trying, and the company was eager to come to Helsinki to demonstrate the tricks that could set their offering apart from the competition.

The system shown at the air show was designated the Finnish Land Ceptor, and while based on the British (and to a lesser extent the Italian) Land Ceptor system, the Finnish offering is customised our particular needs by sporting a combination of:

  • Volvo FMX 8×8, a rather popular heavy-duty truck in Finland,
  • Saab Giraffe 4A, which in its navalised form won the contract for the main radar of the Pohjanmaa-class (SQ2020), and
  • CAMM/CAMM-ER family of missiles, in operational service with a number of countries both on land and afloat.

Those familiar with FDF acquisitions will spot the pattern: some of the best yet still  mature systems in their own field. This is usually a popular formula when you knock on the door to the FDF Logistics Command, so let’s go through things step by step, before we look at why the offer could be a stronger contender than I originally anticipated.

A Volvo FMX 8×8 in its natural environment, moving gravel somewhere in Europe (in this case, Minsk). Source: Wikimedia Commons / Homoatrox

The Volvo FMX series of trucks was launched just over a decade ago with an eye to heavy-duty earthmoving, a field that earlier had seen the use of a combination of different variants of the baseline FM- and FH-series of vehicles. The FMX sports generally more rugged equipment, including a serious tow point up front, a proper skid plate, as well as steering and gear box optimised for the task (people might remember the viral commercial in which Charlie the hamster drew a truck up from a Spanish quarry). In the eleven years since its introduction, around 1,000 FMX have been sold in Finland, which is no mean feat for a niche vehicle considering that the total number of newly registered trucks above 16 tons (gross weight) has been hovering between 2,000 to 3,000 vehicles annually in Finland during that time. With the vehicle being so common, it’s no surprise that the spares are relatively easy to come by, and finding a Finnish mechanic who knows the model is relatively easy compared to e.g. for the MAN HX-77 used by the British to transport their systems. It might also be worth noting that Volvo Trucks isn’t owned by the Chinese, as is the case with Volvo Cars. MBDA also notes that truck could be any model capable of carrying the 15-ton missile pallet, and that they are happy to change it out if FDF would prefer some other platform. However, FMX certainly looks like a solid choice, and unless there’s logistical reasons for something else I don’t expect them to do so.

The Giraffe 4A is an S-band radar that combine the functions of acquisition/surveillance-radars as well as fire control-radars into a single system. It builds upon Saab’s experience with the earlier Giraffe AMB and ARTHUR (MAMBA in British service) counter-artillery radar, to have a single AESA-based radar that can support the whole battery. As noted, it is the key sensor of the Finnish Navy’s upcoming corvettes, where it will be paired with the ESSM-missiles to provide air defence. The radar is also on order to the Swedish Defence Forces as part of their integrated air defence system. The basic specifications of the Giraffe 4A – the fact that it’s a GaN-based AESA system – means that it is able to track a significant number of targets effectively and also follow small and difficult to see ones, such as UAS, cruise missiles, artillery projectiles, as well as being able to handle detection and tracking of jammer strobes. And yes, since it operates in S-band and many flying stealth aircraft are optimised for the X-band, it will have an easier time detecting them at longer ranges than if it was a classic X-band radar. However, any such statement is bound to include a number of caveats and quickly degenerate into a mud fight. Will it spot stealth aircraft? Any radar does, as long as the target is close enough. Will it do so at a useful range? That depends on how stealthy your target is from that particular angle. Still, the Giraffe 4A is about as good as they come in this day and age, and while MBDA is happy to change out the radar if the FDF wants something else, I wouldn’t be surprised if it is in fact their first choice (a number of older Giraffes are also in FDF service, most notably the Giraffe 100 AAA as the LÄVA movable short-range air-surveillance system, though their relationship to the Giraffe 4A is rather distant).

The layout of the TEL has the missiles to the very rear with the flat rack missile tubes and the hook-system used to change them, two sets of jacks (front and rear), and the front unit which include both the electronics, onboard power supply, and masts. The FMX-based TEL is a standard road-legal truck according to Finnish regulations, and does not require any special permits besides the standard C-rating on the part of the driver (though you might need an ADR-certificate to drive live missiles, I’ve never had to check up that one so I honestly don’t know). Source: Own picture

The big deal here is the CAMM family of missiles, and in particular the big brother CAMM-ER. The CAMM does share a number of components with the ASRAAM air-to-air missile, though it would be wrong to see it as a ground-launched version of the latter. The missile is designed from the beginning as a dedicated ground-based air defence one, and as such MBAD is really pushing the fact that the optimisation work in the design phase has done wonders.

To begin with, the missile is soft-launched. In other words, instead of the rocket engine just firing and powering the missile into the air, a gas generator causes the missile to pop out of the VLS-tube. Or rather, it doesn’t just pop out, it flings it 20 meters up into air above the launch canister. There thrusters fire to point the missile in the right direction, and only after that does the main rocket fire. The test firings from HMS Argyll of the naval Sea Ceptor-version of the CAMM shows the principle rather well.

Now, why go through all that mess when it is easier to just light the rocket and off you go? There are a number of benefits. To begin with, the stress on the launcher is significantly lower, as there is no blast of fire and hot gases inside the small compartment of the launch tube. Not having to fireproof stuff means cheaper launcher. However, there’s also the benefit that since the missile hasn’t warmed up everything, there is no lingering heat signature from a missile launch, which makes it easier to keep your firing unit hidden. Hiding the launcher with nets and similar is also easier, since you don’t have to worry about them catching fire.

Another positive is the use of a VLS without wasting energy and time to course correct. In theory, a traditional missile will be faster on the target since it starts accelerating immediately. However, that require the launcher being pointed roughly in the right direction. For VLS systems, such as the very popular Mk 41 found aboard most western-built frigates and destroyers, the missile will actually waste a bunch of time accelerating out of the tube straight upwards, and then it has to trade energy to be able to turn toward its target on a less than optimal course. Everything in life is trade-offs and compromises, so which system is the most beneficial depends on your scenario, but the cold-launch means that by the time your rocket kicks off, the missile is already roughly pointing where it’s supposed to go. MBDA is claiming that in total this saves a whooping 30% in nominal launch weight compared to having the missile accelerate out from the tube (I would have to get a rocket scientist to check their maths before I’m ready to confirm that number), which in the case of the CAMM-family directly translates into an added usable energy which allow it to manoeuvre effectively at long-ranges or, crucially, at high altitudes. The profile of the weapons are such that the effective high-altitude performance is a priority, and MBDA describe the principle as the difference between a fence and a bubble. How big an area the fence covers and how high it goes are obviously classified data, but the official figures given is that at 45 km for the CAMM-ER and 25 km for the CAMM-sans suffix there is still usable energy for a high probability of kill, with the max ranges being further still.

A feature that definitely falls in the “Cool”-category is that the soft-launch can take place from inside a building provided that there’s a hole in the roof and the roof is less than 20 meters above the top of the launch tubes. A more serious benefit is that it allows firing positions in forested or urban terrain to be used (again, provided the location meets the the 20 meter + launcher height limit), and the ability to fire in all directions gives added flexibility to the system as well.

A Norwegian NASAMS-launcher of roughly the same standard currently in Finnish use as the ITO 12 showing the hot-launch principle of the AMRAAM-missile. Source: Norwegian Armed Forces / Martin Mellquist

For anybody wondering about the current situation, the NASAMS II-system in use by the FDF sports angled hot-launch cells, meaning that there will be a rocket firing inside a box and the missile will leave the launch cell under its own power headed towards wherever the launcher is pointed. As such, you don’t want to put up your NASAMS-launcher in a small clearing in the middle of the forest.

The basic firing battery for the Finnish Land Ceptor consists of six TELs running around with eight missiles each, a tactical operations center (TOC), and the aforementioned radar which function as the units main organic sensor. In addition there is obviously a number of supporting vehicles such as those carrying reloads and personal equipment for the battery personnel. The TOC is the brains of the unit, and functions as the command and communications node. Here targets are identified and engagement decisions made, with firing units being chosen and launches ordered. The whole system can be fed targeting data via the datalink from any number of sources as long as the location data quality is up to par. This include the organic radar of the battery, but also those of neighbouring batteries, other radars, ships, aircraft, and so forth. This can come either directly to the TEL or, preferably, through the TOC. The TELs are the aforementioned FMX trucks with the complete firing unit as a single palletized unit. They lack their own radars, but can be fitted with an optional electro-optical sensors in a mast which allows for independent passive targeting at ranges of up to approximately 20 km. As such, the TELs are able to operate independently to a certain extent, relying on the datalink and/or own sensor to get targeting data. Crucially, MBDA has already demonstrated their ability to successfully integrate TOCs and TELs with Insta’s C2-network.

The characteristic twin masts of the TEL, with the larger one housing the datalink antenna and the smaller one being the optional E/O-sensor which allow for independent targeting if the radar and datalink are down. Source: Own picture

In practice, the TELs would drive to a given firing location, where the truck would park, lower the jacks, raise the missiles and masts, and the crew would push a few ‘On’-buttons and start connecting cables. The whole thing would be ready to fire within ten minutes, but a more realistic time for a fully integrated IADS-position is in the ten to twenty minutes range. A two-person crew could handle the whole system, but to ensure 24-hour continuous operations a squad of eight is the standard. The complete missile unit is palletized, and in case a position is expected to be static for a longer time the jacks can be heightened to allow the truck to drive away, after which it is lowered to lay flat on the ground a’la NASAMS. This allows for a smaller footprint and is more easily camouflaged compared to the full vehicle. In a static position (something the British Land Ceptors will employ on the Falklands) it is also possible to start pulling power and communications cables between a fortified TOC and the firing units, though in case of a more fluid scenario where one wants to stay mobile the missile unit has its own onboard power unit in the form of a diesel generator and can take care of the communications via the datalink mast mentioned earlier. This flexibility to allow the same system to be either in full shoot-and-scoot mode or as a fortified solution (as mentioned, you could in fact fortify the launcher as well thanks to it being cold-launched) is quite something.

Reloading take a handful of minutes and the whole missile set can be changed out via a flat-rack and cargo hook system. Alternatively, individual launch tubes can be switched out with a crane. The tubes are both the storage and launch containers, meaning the munitions are next to maintenance free. Once the fire command is given, the frangible top-cover is simply torn apart by the missile heading upwards. Any single TEL can quickly change between CAMM and CAMM-ER simply by switching out the flat racks, with the CAMM-ER being identified by its longer tube. Both missiles sport a new active radar-seeker with a low-RCS capability, meaning that they are able to operate in fire-and-forget mode once they’ve left the TEL.

It’s hard to shake the feeling that MBDA is onto something here. While they decline to discuss the specific FDF requirements and projects in much detail – the official line is that that is something best left to the customer – it is rather obvious that the CAMM-ER would give the FDF the wanted high-altitude capability for a ground-based system, while the baseline CAMM would seem to fit the area coverage-requirement rather well. The modularity, mobility, and ability to integrate into current networks are also obviously a big deal. And it is hard to not notice just how well the combination of systems seem to fit the FDF’s Goldilock’s approach of proven but yet cutting edge. With the UK and Italy both having acquired the Land Ceptor-system, it certainly is far from a paper product. This is also something that MBDA like to point out, the benefit of sharing a common system with such a strategic partner as the British Army. The UK might not be first in line when Finland is discussing strategic partners in the defence sector, but it is certainly coming just behind the front-runners thanks to initiatives such as JEF. An interesting aspect is also the possibility of MBAD cooperating with Finnish industry on the Land Ceptor as part of an indirect industrial cooperation package in case some of the eurocanards would win HX (ground- and air-based air defences are obviously all part of the same attempt at increasing FDF’s overall air defence capabilities). Already now, Finnish industry has reportedly been involved in the development of the Land Ceptor proposal. MBDA is also happy to declare that it truly would be a Finnish system, with full sovereign capability and freedom of use, as well as local maintenance. “We give you the keys, and you use it”, as it was explained during our discussions.

But the competition is though, and MBDA has had a surprisingly hard time landing a large Finnish order. Part of this likely comes down to price where the shorter production runs typical of European systems compared to US ones have been an issue. This time they are up against not only the Israelis which have beaten the more traditional suppliers to FDF twice in recent acquisitions, but also Kongsberg with a developed version of the NASAMS which would bring significant synergies to the table. However, might the NASAMS-ER be too much of a case of putting all the eggs in the same basket – especially if we see an AMRAAM-equipped fighter taking home HX? When I ask him about the though competition they face, Jim Price, MBDA Vice President Europe, is confident.

We’re always in though competitions. [But] we have a unique military capability.

You can indeed come a long way with that when dealing with the FDF, and it certainly sounds like a combined force of NASAMS and Land Ceptor batteries each playing to their respective strengths could provide a well-balanced mix to support the Air Force and the FDF as a whole in their quest for air superiority. According to the latest info, we will get to know if the FDF agrees sometime during 2022.

Oh, and you really didn’t think I could write the whole post without embedding The Hamster Stunt, did you?

Finland goes GBAD-shopping

In a long-awaited move, the Finnish Defence Forces Logistics Command yesterday sent out the RFQ for a new ground-based air defence system “with a high ceiling”. The corresponding RFI went out in 2018, and under the current schedule the procurement will be finalised before the end of 2022 and the system will become operational during the latter half of the 20’s.

For a more general overview of the current state of the Finnish high-end ground based air defences (and why we won’t acquire an anti-ballistic missile capability), I recommend that you check out my sub-chapter on Finland in the FOI anthology “Beyond Bursting Bubbles“, but the long story short is that Finland acquired the Buk-M1 in the late 1990’s as part of a deal to cover the Russian debt stemming from the Soviet clearing accounts. Unfortunately, worries about the ability of Russia to counter the system meant that they had to be retired quite soon thereafter, with the last conscripts training on the system in 2005. Exactly when (if?) the system was withdrawn is unclear, but it seems to have survived in (limited?) service past Crimea.

In any case, a replacement system was acquired under what would become the ITO12 procurement, which saw SAMP/T and NASAMS II face off in a competition won by the NASAMS. The reason behind the choice was bluntly described by then Chief of Defence, Admiral Kaskeala:

Do we buy one Cadillac or four Volvos?

In any case, the ‘Volvo’ has scored a number of successes around the world, and is generally seen as a potent system, but one that suffers from short range due to the poor performance of its AIM-120C AMRAAM missile when fired from a ground-based launcher. Janes lists it as having an estimated max range of 20 km, though this is partially offset by the launchers being able to be placed up to 25 km out from the fire direction centre (FDC). The ceiling is rather uncertain, with The Drive mentioning 50,000 feet (15,000+ meters), but on the other hand then-Finnish inspector of the ground-based air defences, colonel Sami-Antti Takamaa, in an interview in 2018 stated that the new system (which should be able to go significantly higher than NASAMS) should have a ceiling of 8,000 to 15,000 meters. There’s likely an apples-to-pears situation in the numbers above, with Takamaa referencing the effective engagement altitudes which are quite a bit below the theoretical maximum.

However, for most situations the maximum specifications isn’t as interesting as other factors. The ability to deploy the systems with the launchers dispersed, the active seeker of the missiles, modularity, and the modern C4I architecture are of greater value. However, the fact that the NASAMS would lose in top trumps against the system it replaced means that there is a gap above the coverage provided by Finnish SAMs, and one that can only be covered by fighters.

The Finnish air defence doctrine places a high emphasise on the joint aspect, with the ground- and sea-based systems supporting the fighters of the Finnish Air Force. Here a NASAMS II battery is deployed in Lohtaja during the Air Forces’ main exercise Ruska 20 earlier this fall. Source: Finnish Air Force FB/Joni Malkamäki

This leads us to the current ITSUKO-program, where throughout the focus has been on increasing the air defence capabilities at high altitude. This is interesting, as most countries discuss their different classes of SAM’s in terms of range rather than ceiling, and clearly shows which operational problem the FDF is trying to solve. Obviously, with increased ceiling comes increased range (though one shouldn’t think of the effective engagement zone as a half-sphere above ground, as the routes chosen by modern missiles and the physics involved makes things a bit more complex than that), but this is largely seen as a secondary bonus. In the earlier quoted article, major general (engineering) Kari Renko of the Finnish Defence Forces Logistics Command explained that “Increased territorial coverage means that we have more batteries operational”, and struck down the notion that a meaningful increase in territorial coverage could be achieved solely by increasing the range. In effect, this is due to the large area of Finland, which means that the difference in coverage between differently ranged systems, especially at low range, is small enough that it is negligible at the operational or strategic level.

Here it is good to remember that as none of the current systems are to be replaced, the number of operational batteries will in fact go up. This in turn means that, in the words of current inspector of the ground-based air defences, colonel Mikko Mäntynen, the “fighters will get a higher degree of freedom”. While this is all good and true, there is a nagging feeling that this might be an attempt to cover for the fact that HX won’t reach 64 fighters. Let’s hope that feeling is unfounded…

The news yesterday was that the field competing has been cut down by half. Of the ten companies that received the RFI in 2018, five are still in the competition bidding for the role as prime contractors. These are Kongsberg Defence and Aerospace (KDA), Diehl Defence, MBDA, Rafael, and IAI. Missing from the list are all American companies, as well as Swedish defence company Saab whose RBS 23 lacks the punch to compete in this race (note though that Janes gives the max altitude as 15,000 meters, again showing that 15,000 meters max doesn’t necessarily mean that your system can effectively handle engagements at 8,000 to 15,000 meters). However, it is entirely possible that Saab appears as a subcontractor in some of the bids, as their Giraffe 4A radar has had a tendency to do so in other places. Raytheon is a long-term active partner to KDA, and it is no surprise that they are confirmed to be working together with them here as well (even if rumours had hinted at them also bidding separately as a prime, presumably with the MIM-104 Patriot). Another of Raytheon’s joint programs might also show up…

Of those bidding, Diehl is without doubt the odd one out. As far as I am aware of, Diehl has nothing bigger than the IRIS-T SLS (which recently entered Swedish service as the RBS 98). Being based on a short-range IIR air-to-air missile, it suffers from a 5,000 meter ceiling (again according to Janes), leaving it even shorter-legged than the NASAMS. To be completely honest, I have no idea about what Diehl is planning to offer.

Edit 30 October: Diehl in fact has a longer-ranged version. There is quite a bit of confusion in their designations in open sources (I’ve e.g. seen SL, SLS, and SLM all refer to just different launchers firing the same IRIS-T missile, and I’ve even seen the Swedish EldE 98 referred to as SLM!). However, Diehl’s SLM is in fact a rather different missile with a seriously longer range thanks to a larger rocket and an aerodynamic nosecone that pops off once the target is within range of the missile’s IIR-seeker. This dual-mode (firing solution and early tracking being provided by radar and datalink until switching to final guidance by IIR) is rather interesting and could potentially be more difficult to spoof compared to more traditional solutions. The missile has been test-fired successfully, but the operational status seems to be rather uncertain. Thanks to f-pole for clearing things up!

KDA is the obvious favourite, being able to offer the AMRAAM-ER for the NASAMS-system. The AMRAAM-ER in essence combine booster of the ESSM and the front unit of the AMRAAM to produce a completely new missile with “50% increase in range and a 70% increase in altitude” compared to the current AIM-120C-7.

In other words, KDA can simply offer more of a system already in service with the Finnish Army, but with ability to use either the shorter-legged AMRAAM or the longer-legged AMRAAM-ER according to need. The modularity of the NASAMS also means that integrating a host of other missiles is possible, should the FDF be so inclined (spoiler alert: they’re probably not). That kind of synergy effects could very well be hard to beat, but the competition isn’t giving up without a fight.

Land Ceptor during test fires in Sweden in 2018. The time lapse shows the cold launch sequence in which the missile is flung upwards and only then actually firing. Source: Crown copyright

As noted earlier on the blog, MBDA has had a surprisingly difficult time in landing any major contract with the FDF. The obvious system for them to offer is the Land Ceptor/CAMM-ER. The missile is an operational system with the British Army and the specifications on paper seems to be a good match, but it is difficult to see it outmatching the stiff competition.

The question about what the two Israeli companies will offer is more open. Rafael is able to offer the SPYDER, which is a truck running around with a bunch of missiles on its back. It offers the ability to fire both the Python 5 highly-manoeuvrable short-range IIR-missile, but also the Derby longer-ranged missile. The overall concept is rather similar to that of the NASAMS, with a modern C4I architecture and air-to-air missiles adopted for ground-based use, and while not as prolific as the NASAMS it has scored a few export successes from serious customers such as Singapore. However, most numbers found in open sources seem to indicate that the SPYDER lacks the range and ceiling to be able to offer a meaningful improvement over the current NASAMS. This would in turn mean that the system offered is the David’s Sling, which uses a two-stage Stunner-missile (also known as the SkyCeptor). The missile is perhaps best known internationally as the PAAC-4 missile for the US Patriot-system, which is a joint program between Rafael and Raytheon to produce a significantly cheaper missile with better performance compared to the current PAC-3 that is used for anti-ballistic missile work with the Patriot battery. The Stunner is designed from the outset to be able to easily integrate into other systems, meaning that it is possible that the weapon could communicate better than some of the competition with the current systems found in the Finnish integrated air defence network. Still, it does feel that the ABM-capable is a bit of overkill in a competition against missiles such AMRAAM-ER and CAMM-ER (remember that several high-ranking officials and generals at different times have shot down the idea that Finland would be interesting in pursuing a real ABM-capability), unless the offer really is one we can’t refuse.

One of the final test firings of the David’s Sling before the system entered operational use with the IDF. Note the asymmetric nose. Source: United States Missile Defense Agency via Wikimedia Commons

IAI has a more varied, and at least on paper, more suitable range of weapons, with the BARAK-series being the logical contender. This include a range of missiles, with the BARAK-LRAD missile being the most likely version on offer here. This is part of the general BARAK MX-system, and is developed in parallel with the BARAK 8 for the Indian Navy. Crucially, IAI’s Elta-division has a large portfolio of radars (including the ELM-2311 C-MMR which was recently acquired by the FDF for use as a counter-battery radar), and as such it would be interesting to see which radars they would pair with their interceptor for the bid.