The Iskander Threat

Few modern weapon systems have the power to captivate popular imagination the way the Iskander does. Partly this stems from the lack of a clear specification, both for operational security reasons and because the system violates the (recently deceased) INF-treaty. Another reason for the allure is that the system represents a new capability, which so far has not been found in the Russian (nor in too many other countries’) arsenal, and lastly but not least the simple fact that it can carry nuclear warheads.

Iskander-M being launched. Source: Mil.ru via Wikimedia Commons

In addition, there is widespread confusion amongst non-defence geeks about how exactly the Iskander and other ballistic missiles differ from the more widespread cruise missiles, and how to defend against enemy Iskander-attacks. This blog will strive to sort out some of these misconceptions, and give a picture of how the Iskander threat should be evaluated.

The basic Iskander, Iskander-M, is a ballistic missile. For those into the details, the system’s official GRAU designation is 9K720 while the missile itself is designated 9M723. The word “ballistic” means that the missile roughly follows a ballistic trajectory, i.e. the path an object would take if you would throw it. A big rocket engine propels the Iskander up in the air, after which it will fall down onto the target. It isn’t a pure ballistic trajectory, the missile is guided and can make course changes, but it can’t e.g. regain height once it has started diving.

As said, the exact performance is shrouded in secrecy. The most often quoted figures is a range of 400-500 km, and a warhead of 700 kg. However, professor Stefan Forss already in 2012 noted that the official numbers doesn’t quite add up, and calculated a range of 500-750 km, while also noting that some Russian sources “could imply a heavy penetrating warhead weighing about 1,300 kg.” Note though that 700+ km ranges aren’t possible with such a heavy warhead in current configuration (the range calculations were made based on a 400 kg nuclear warhead). The missile likely has a CEP better than 10 meter under ideal circumstances, i.e. half of the missiles will fall within that distance of the target. A 700 kg warhead hitting within 10 meters, especially considering the kinetic energy of the approaching missile, does make the weapon viable to use against individual buildings with a conventional (i.e. non-nuclear) warhead, something which was not the case with Cold War missiles such as the SCUD or Tochka. However, like the earlier missiles, the Iskander is only capable of attacking fixed targets.

It is obvious that if you are supposed to reach a target hundreds of kilometers away with a ballistic trajectory you will need to go fast or high, preferably both. This is what makes shooting down ballistic missiles so hard. The Iskander missile dives towards the target at speeds of 2-3 kilometer per second. Trying to shoot down a maneuvering target falling towards the earth at eight times the speed of sound is extremely difficult, and require a very fast missile placed close to the target of the Iskander. The Patriot system does feature missiles capable of intercepting Iskanders (though their efficiency is questioned), and this is what the Swedish Army is in the process of acquiring. Needless to say, the capability doesn’t come cheap: the Swedish deal is valued at 2-3 billion Euros, which will give four batteries with anti-ballistic missile and anti-aircraft missiles.

However, the Iskander isn’t exactly cheap either. A missile brigade, there are ten to twelve in total in the Russian Armed Forces, feature twelve launchers meaning that the opening salvo of all Russian operational Iskanders would have a hard cap of 288 missiles. This would likely be lower as 100% availability is usually restricted to utopia and all brigades wouldn’t be directed against a single target anymore than all armoured brigades would.

Now, a hundred unstoppable conventional warheads raining down on Finland would cause issues. Targeting strategic sites such as bridges, headquarters, utilities such as power and water plants, would very quickly make things complicated. However, this is not in and by itself a war-winning weapon. Granted there could be a second wave, possibly even a third, but the supply of missiles aren’t endless. High-end weapons comes with a cost, even if you’re trading in rubles. In the end destruction caused by traditional air strikes coupled with cruise missiles will quickly become a bigger issue.

MiG-31 with Kinzhal air-launched ballistic missile at the Moscow Victory Day parade 2018. Source: Wikimedia Commons

A short note on the Kh-47M2 Kinzhal. This is a large missile carried by the MiG-31 heavy fighter. It is part of the family of recently unveiled Russian “super-weapons” aimed at ensuring a Russian nuclear deterrent in the face of developments when it comes to missile defences. The Kinzhal seems to be a modified version of the Iskander-M missile, which thanks to higher launch speed and height gives it a range of over 800 km (1,000 to 3,000 km is often quoted, but it seems that these numbers include the combat range of the aircraft). Kinzhal seems to be a more realistic option compared to several other of the unveiled systems, but exact specifications and whether Russia will field a conventionally armed version are still unclear.

Cruise Missiles

Cruise missiles are a completely different breed of beasts. They are in essence unmanned aircraft carrying a warhead to a target. The size, range, operating methods, launching platforms, and warhead types varies, but in essence they have an engine and wings to allow them to fly long distances, and then crash into whatever their target is. Often the cruise missiles fly towards their targets at very low altitude, using the terrain to mask their approach. The Finnish Air Force operate the AGM-158 JASSM cruise missile, while the Navy’s current and upcoming anti-ship missiles both exhibit similar traits (it is largely a question of nomenclature/taxonomy rather than any practical differences if anti-ship missiles should be counted amongst cruise missiles or as a detached family of their own).

The firing unit of the NASAMS, sporting six canister mounted AIM-120 AMRAAM missiles. Source: Maavoimat FB

Now, as the cruise missile flies like an aircraft towards its target it can also be shot down like one, using the regular means of fighters and ground based air defences. Cruise missiles can make tricky targets due to their low altitude, speed, and (in some cases) stealthiness, but a modern SAM-system such as the NASAMS of the Finnish Army should have no problem in bringing down one, provided it is located in the appropriate spot.

As opposed to ballistic missiles, cruise missiles have shown a nasty tendency to proliferate. In part this is due to the low(er) cost compared to modern ballistic missiles of the same class as the Iskander. The most famous example of a modern Russian cruise missile is the 3M14 Kalibr land-attack missile (think Tomahawk/TLAM), which sports a range of 2,000 km and comes in at a unit cost of 1.1 million Euro. The weapon is officially in use aboard a number of modern Russian warships (including submarines), and likely it is this very missile that is carried by the Iskander-K under the designation 9M729. Yes, confusingly enough there is both a ballistic missile-carrying version of the Iskander and a cruise missile-carrying version. Generally, if people refer to something simply as the “Iskander”, it is the ballistic missile-carrying Iskander-M they mean.

The 9M729 is also at the centre of the INF-controversy which led to the US declaring the treaty void (INF doesn’t cover sea-based missiles, but as soon as the Kalibr was brought ashore it became illegal under the INF-treaty).

An Iskander-K with one of it’s two cruise missile containers raised. Source: Vadim Grishankin via Wikimedia Commons

If it is the unstoppable nature of the ballistic missile that makes the Iskander-M a threat, it is the large number of missiles coupled with the vast range that makes the Kalibr/Iskander-K one. Finland is within range of the Kalibr of both the Baltic as well as the Northern Fleet, where the vessels of the Northern Fleet effectively are beyond the reach of the anti-ship weapons of the Finnish Defence Forces.

Conclusions

The Iskander-M is a threat. So is the Kalibr/Iskander-K and other cruise missiles. However, they have very little common with each other, besides the fact that they transport warheads into enemy territory (as does strike aircraft). Phrases such as “the ability to defend against Iskander and Kalibr-missiles” are sometimes thrown around as if they are referring to a single capability, when in fact they are vastly separate issues. We already have the capability to defend against cruise missiles in all three services, with weapons such as the NASAMS, Umkhonto, and the AIM-120 AMRAAM. Acquiring point-defence capabilities against the Iskander for four possible targets would be a project comparable in cost to two Squadron 2020-projects. Not vessels, but two complete projects of eight vessels in total. As such, it is hard to argue with the official Finnish position that we’ll simply have to disperse and be prepared to suffer a number of Iskander hits, while at the same time investing further in medium-range air defence capabilities to defend against cruise missiles and enemy aircraft. The combination of Squadron 2020, HX, and the Army’s new GBAD-program will make the skies over Finland much deadlier for an attacker in the upcoming decades. Just not for their ballistic missiles.

Advertisements

No Finnish Harpoon/ESSM-order (at least for now)

As the headline says, yesterday’s big news from the naval sector is not that Finland has ordered the Harpoon and/or the Evolved Sea Sparrow Missile (ESSM). In fact, what has happened is that the US offers for two major Finnish naval programs have become open knowledge. This happened as the US Defense Security Cooperation Agency has requested clearance for the sale of 112 RGM-84Q-4 Harpoon Block II+ ER anti-ship missiles (of which twelve are of the older RGM-84L-4 Harpoon Block II version which will be upgraded) and 68 ESSM missiles. These kinds of pre-clearances are not uncommon, and allow for a rapid deal following a (potential) procurement decision by a foreign customer (thanks to Aaron Mehta for providing insights about US export).

iwjcvnp
One of the latest renders, showing the refined corvette concept. Source: Finnish Defence Forces / Insinööriupseeriliitto

The background is two ongoing Finnish projects: the Pohjanmaa-class multirole corvettes and the PTO 2020 heavy surface-to-surface missile. The PTO 2020 will be found aboard the Pohjanmaa-class as well as replacing the current MTO 85M (roughly a RBS 15 Mk II) on the Hamina-class as part of their MLU as well as in truck-mounted batteries. As the MLU for the Hamina is very much underway already, the winner of the PTO 2020 will be announced during the first half of this year. I am still standing by my opinion that the RBS 15 Mk 3+ and the NSM are the two frontrunners, and would be somewhat surprised if Harpoon won the trophy (and even more so if the Exocet MM40 Block 3 did, though everything is possible).

The Pohjanmaa-class is still in the design stage, with the main contract(s) to be signed this year, and the building phase to start next year. The armament shown on renders include two quadruple mounts of PTO 2020 amidships, the new lightweight torpedo from Saab, the BAE/Bofors 57 mm Mk II deck-gun, and a battery of vertical launch system-cells (VLS). The two main VLS-systems on the market are the French Sylver and the US Mk 41 (a modernized version called Mk 57 is also available, and mounted on the Zumwalt-class). Both are available in different lengths, with the shortest Sylver, the A43 (an earlier A35 concept seems to have been dropped), being around 4.3 m long (or rather, high), and the shortest Mk 41 being 5.2 m long. The 8-cell module of the Sylver is also smaller and lighter than the corresponding 8-cell Mk 41 module, in part because the silos themselves are a few centimeters smaller. For a full run-through of the differences, see this post by the UK Armed Forces Commentary-blog, where the differences are discussed with a keen eye to the pros and cons for the British Type 26 Frigate.

essm_launch_m02006120700079
An ESSM leaving a Mk 41 cell. Source: US Navy via Wikimedia Commons

Now, while some vessels, such as the current Finnish Hamina-class and the upcoming British Type 26, feature dedicated cells to their main air-defence assets, the VLS on the Pohjanmaa will likely be home to the ships main air defence weapons. This becomes evident as the ESSM offer is for the weapon quad-packed in Mk 25 modules, designed to fit the Mk 41-system. If the ESSM would be chosen, the Pohjanmaa-class would be by far the smallest vessel to feature the system. The decision to offer the Mk 41 is interesting, as there is a dedicated Mk 56 ESSM VLS-system if the sole use would be for the ESSM.

The ESSM is certainly a competent weapon, and shows what the Navy is aiming for. 8-16 cells with quad packs would provide for 32-64 medium-ranged missiles, a huge boost compared to the current 8 short-range Umkhontos found on the Hamina. While the Mk 41 is too big for the Hamina, the Mk 56 mean that half a dozen ESSM’s could potentially be fitted as part of the MLU if the Navy choose to go down that (unlikely) route. More interesting is that the ESSM could be fired from the Army’s NASAMS surface-to-air batteries, letting the Navy and Army use the same missile stock. The upcoming ESSM Block 2 will feature an active seeker based on that of the AMRAAM, and is potentially the version offered to the Pohjanmaa.

Interestingly, the AMRAAM-ER is a AMRAAM married to the engine of the ESSM, and no, I don’t know what exactly is the difference between an AMRAAM seeker married to an ESSM engine and an ESSM engine married to an AMRAAM seeker.

I am still inclined to believe that the Sylver might be the Navy’s preferred VLS due to the smaller footprint. However, as with the PTO 2020, we will just have to wait and see.

Beyond NASAMS

In the shadow of the HX-fighter competition, the state of the ground based air defences in Finland has again appeared in the headlines. The short story is that in the mid-90’s Finland acquired the Russian Buk-M1 air defence system as part of Russia paying off the Soviet balance of the clearing accounts. However, while the system certainly is competent, questions soon arose if it was wise to operate a high-tech system which the main adversary had built? Especially as knowing the exact capabilities of the radar and missile is of crucial importance when it comes to defeating radar-guided missiles.

By the mid-00’s training new conscripts on the Buk stopped, and the system was phased out (never trust a Finn who says something is retired, the last conscripts who trained on the system most likely had another ten years in the reserve, during which they were assigned to a wartime unit operating the missiles, giving a ‘real’ retirement date around 2015) and replaced by the NASAMS II.

24300933_1631140310242685_5422317108702860968_n
The launcher of the NASAMS, sporting six canister mounted AIM-120 AMRAAM missiles. Source: Maavoimat FB

The NASAMS is a controversial system in Finnish service. Not because it is bad, it is very much amongst the most modern ones available, but because it is of significantly shorter range than the Buk it replaced. Most crucially it has a ceiling of around 10,000 meters, meaning that most modern fighter aircraft can simply operate above this. This isn’t necessarily as big a drawback as it is often portrayed to be. Operating above 10,000 meters place high demands on sensors and weapons if you are to hit anything, and it means that you are easily spotted by air surveillance radars, meaning that the advantage of surprise is long gone by the time the target is overflown.

Still, this has left Finland without a long-range surface-to-air missile for the first time since the late 70’s, and talk about the need for something heavier has been going since the decision to procure NASAMS instead of Aster. The big question is what?

army2016demo-073
An Iskander TEL raising one of its missiles into firing position. Source: Vitaly Kuzmin/Wikimedia Commons

One issue which has been raised is the defence against ballistic missiles, i.e. missiles which are fired at a high angle, fly up to significant heights, and then ‘fall’ down at extreme speeds to hit a target. The Russian 9K270 Iskander-M is the embodiment of this threat, and comes equipped with either a conventional warhead (usually quoted at around 500 kg, but possibly with an option for a heavy penetrating warhead above 1,000 kg) or a nuclear one. The big improvement of the Iskander compared to the 9K79 Tochka U it replaced is the significant improvement of accuracy, which for the Iskander is quoted at a circular error probability of below 10 meters (i.e. half of the Iskanders will land within 10 meters of the intended target), meaning that it can reliably be assumed to hit individual buildings or bridges. As such, many has voiced the opinion that Finland need a system capable of shooting down ballistic missiles.

…and it is in the crossroad of these ideas that we find some of the most common misconceptions, which warrant a slight detour before looking at the latest developments.

To begin with, the ballistic missile threat is not new to Finland, nor is the associated A2/AD-problem, but these have been a part of the Soviet/Russian arsenal for decades. Even with the improved accuracy of the Iskander, it is not a war-winning weapon, as the limited number of missiles available and the rather limited damage caused by a single hit makes it impossible to take out dispersed targets. In other words, while it is possible to hit the command centre of a unit, it is not possible to wipe out the unit itself. The Iskander also needs target information before launch, meaning that it is best used against stationary targets.

Another issue often overlooked is how hard it is to shoot down a ballistic missile. Crucially, while a modern long-range air defence system can sport ranges of over 100 km against air targets (at high altitude, at lower altitude the earth’s curvature creates shadows), the corresponding ranges when trying to intercept a ballistic missile approaching at very high speed and steep angle are significantly shorter. While the exact performance is secret, some sources state that the maximum range is a few tens of kilometers, creating a significant problem with regards to how to base air defence batteries to be able to protect a certain target. The implications of this is that a single battery might have a hard time defending both the Upinniemi naval base and central Helsinki, depending on the parameters of the intercept.

20170913_astamt01_AURORA_mediadag011
A Patriot battery from the US Army deployed in Sweden during exercise Aurora 17 last autumn. Source: Astrid Amtén Skage/Forsvarsmakten

As such, it is no surprise that Finnish officers are focusing on dispersion and hardening strategic targets instead of acquiring anti-ballistic missile capabilities. This is in marked contrast to Sweden’s decision to acquire the Patriot. Here, while the decision is not yet finalised, the ability to field the PAC-3 missile (or potentially the upcoming PAAC-4/Stunner/SkyCeptor) to take down ballistic missiles has played a key role. However, the capability doesn’t come cheap, as the total price tag of approximately 1 to 1.2 billion Euro will buy three to four batteries, each with a single radar and three to four launchers. However, the amount and types of missiles acquired will also play a huge role when it comes to cost, and the preliminary request, described as being “generous in size”, lists 200 PAC-3 (for anti-ballistic missile use) and 100 PAC-2 for use against aircraft, for an additional 1.5 billion Euro. The exact kind of combat management system involved will also play a role, as it seen in the case of the 8.6 billion Euro Polish deal for a comparable number of firing units (four batteries with four launchers each, with 208 PAC-3 missiles) as the Swedish order.

All things considered, any kind of anti-ballistic missile coverage is probably outside of the scope of the Finnish Army’s wishlist, with the focus being solely on the ability to shoot down aircraft at longer and higher ranges than what the current equipment is capable of. However, even within these bounds, there are still a significant number of different options available on the market. With this in mind the Logistics Command has now issued a Request for Information to “around ten” companies. Interestingly enough, the interview with brigadier general Renko, deputy chief of the Logistics Command, says that he would like the new missile to be part of the current NASAMS systems. At the same time, he notes that this is not purely about introducing a new missile to old launchers, but that there needs to be more batteries out in the field to improve coverage.

lippujuhlan_pc3a4ivc3a4n_paraati_2014_080_panssariprikaati_nasams_taistelunjohtokeskus
This unremarkable looking little truck is the Fire Distribution Centre (FDC), the ‘brains’ of the NASAMS II. Source: MKFI/Wikimedia Commons

The obvious choice which has figured in reporting is the AMRAAM-ER. Where the basic NASAMS uses the same AMRAAM missile as found on e.g. the Finnish F/A-18 Hornets, the AMRAAM-ER marries the basic AMRAAM seeker (with improved steering code) to the engine of the ESSM (Evolved Sea Sparrow surface-to-air missile), giving a significant increase in both range and ceiling (50 and 70% respectively according to Raytheon). This means that both goals of the RFI could be met by buying more NASAMS batteries, and having both baseline and ER-versions of the AMRAAM in service. The big problem for the AIM-120 AMRAAM is that it is something of a victim of its own success. It is operated by a stunning 37 countries, meaning that no small amount of Russian research is likely going into how to defeat it. Especially if the AMRAAM will continue to be a key part of the Finnish airborne air defences as well, which is likely to be the case unless Rafale takes home the HX-competition, it might be good to ask whether all air defence eggs should be placed in the same basket?

At this point it should be remembered that one of the key points of the NASAMS is its modularity. It is unclear exactly which parts are integrated into the Finnish NASAMS systems, e.g if our ITO 05 (RBS 70 BOLIDE) are able to plug into the NASAMS’s Fire Distribution Center (FDC), something which Kongsberg claim is possible. However, if the Army really likes the current AN/MPQ-64F1 Improved Sentinel radar and associated systems, another missile could potentially be integrated into it. It is hard to see the reasoning behind this, and I am tempted to believe that the journalist misunderstood the general, who instead expressed a wish for the new system to be part of the current Finnish integrated air defences, i.e. sharing the same air picture as well as command and control structures.

ASTER
A French SAMP/T launcher being readied. Picture from Swedish exercise Aurora 17 last year. Source: Astrid Amtén Skage/Forsvarsmakten

If we assume this is what the Logistics Command means, it opens up a vast number of possibilities. One is the very same SAMP/T-system which competed (and lost) against the NASAMS ten years ago. The SAMP/T, also known as ASTER, is the closest competitor to the Patriot, and is also available both with “normal” and anti-ballistic missile missiles. As was the case last time around, both it and Patriot will probably be judged to be too expensive (although the Swedish deal is controversial at it turned out the SAMP/T offer was 150 million Euro cheaper than the Patriot one).

rafael_spyder_sam_system
The launcher of the Israeli SPYDER-MR system. Source: Pritishp333/Wikimedia Commons

However, below the high-end Patriot and SAMP/T there are still plenty to choose from. MBDA, the company behind SAMP/T, offers the CAMM-ER and ASPIDE 2000, and while information is somewhat scarce, both are likely superior when it comes to range and height compared to the baseline AMRAAM. Saab has the SRSAM BAMSE, which offer an altitude coverage of 15,000 meters, and the benefit of operating on a different wavelength, Ka-band as opposed to X-band, than the NASAMS, making it harder to jam both at the same time. Israeli company Rafael offer the SPYDER-MR featuring their Derby-missile with a range of 50 km and a ceiling of 16,000 meters. A more exotic (and highly unlikely) option is the Japanese Type 11 missile system built by Toshiba, of which very limited information is available. Still, it does look like it could potentially fit the bill, and during the last years Japan has opened up for potential arms exports. South African Denel Systems has a number of different versions of the Umkhonto, the basic IR-version of which is currently in service with the Finnish Navy. Some of the more advanced concepts might be able to compete with the baseline AMRAAM, though it is doubtful if they will have enough reach to satisfy the demands of the current RFI. Still, Denel does offer a ground-based launcher, and is probably included amongst the companies receiving the RFI.

The winner of the eventual RFQ which is to follow the current RFI is likely found amongst those mentioned above. The defence forces would like to sign a deal in 2020, and notes that this is tied to HX and Squadron 2020, as all three programs play significant roles in the overall air defence of Finland. If e.g. the CAMM in its sea-going version is adopted for SQ2020, it might increase the chances for CAMM-ER being adopted as the ground-based solution. In the meantime, it does feel like the AMRAAM-ER is the favourite, with the big question being whether relying too much on a single missile seeker for both air and ground-based is too high a risk compared to the synergies it would give?

And as it happens, Kongsberg and Patria a week ago announced that they will open a Missile Competence Centre in Tampere, specifically mentioning their work NASAMS in the press release. Funny how these things come together sometimes.