Nenonen’s heritage, pt 4: Rockets for Multiple Purposes

Since some have asked, it deserves to be reiterated for readers who might not have followed the series from the start: this post, like all of my posts, is based entirely on open source data. I have no inside information, either through documents or other sources, about the wartime doctrine and order of battle of the Finnish forces. Where I describe these, they are based on the rather broad descriptions that are used by sources whose judgement regarding what should be open information I trust, such as the writings of reputable officers or governmental publications. For artillery specific issues, besides what is described in the officially sanctioned 100-year anniversary book mentioned in the first post, most sources are generic international (Western) artillery ones, as the same general trends affecting these can be assumed to be in play when it comes to the Finnish forces as well. With that out of the way, it’s time to get on with the last part.

Finland currently sport two very different multiple-rocket launcher systems in service: the tracked US-built M270 Multiple Launch Rocket System (often abbreviated MLRS, which causes some headaches as that can also be used a generic term for all rocket launchers with more than a single rocket) and the wheeled Slovak RM-70/85 (originally built in Czechoslovakia). It should come as no surprise that neither system was bought new, but were acquired through surplus buys from Dutch/Danish- and ex-NVA-stocks respectively. In Finnish service, they are locally known as 298RSRAKH06 and 122RAKH89 in a designation system sporting calibre and year of entering service with the Finnish abbreviation for ‘rocket launcher’ (fi. Raketinheitin, RAKH) in between. The M270 in addition has the letters RS to denote it as a ‘heavy’ (fi. raskas) system, something which also makes the designation impossible to pronounce smoothly. Note that in keeping with the US designation system, the 298RSRAKH06 uses the 298 mm from “Rocket Pod, 298 mm” and not the actual 227 mm rocket diameter as the calibre designation.

GMLRS firing 2018 Maavoimat homepage
Finnish M270 in white-wash camouflage test-firing the M30A1 GMLRS AW in 2018. Source: Maavoimat homepage

The M270 isn’t going anywhere. The system is still modern and has plenty of life left in Finnish service. According to the Finnish Defence Forces’ homepage, their main mission is to support the higher tactical formations, something they usually do in the area that is the centre of gravity of the battlefield. Kesseli more clearly gives their role as handling operational fires:

For operational fire missions heavy rocket launchers, the artillery of the operational forces, electronic warfare units, sensors able to provide targeting, and those heavy batteries of the regional forces that can use special munitions, are used.

The main changes affecting the heavy launchers in Finnish service has been (and likely will continue to be) the introduction of new munitions together with internal modifications to the launch platforms to make them able to employ these new munitions to their full effect. The most recent addition was the guided M30A1 GMLRS AW (Guided Multiple Launch Rocket System Alternative Warhead) which is capable of precision fires out to 80 km, where the pre-fragmented tungsten warhead provide an area-effect (especially considering that each launcher can fire up to twelve rockets in a single salvo). Finland also has acquired the unitary warhead version of the GMLRS family. For potential future upgrades, it can safely be assumed that Finland is keeping an eye on the US PrSM currently being developed. Before the decision to acquire the GMLRS was made, Finland had filed a DSCA request for the ATACMS which provided a similar 500 km range precision strike capability as the PrSM, but eventually decided against ordering the weapon due to the high cost. If the costs of the capability is brought down compared to the earlier generation, it might certainly renew Finnish interest in getting an even longer reach for the ground-based fires (however, note that while the INF is out of the window, the MTCR is still alive and might create issues once ranges start climbing over 500 km).

The lighter end of the rocket spectrum is more troublesome. As noted, Finland acquired a number of RM-70 (specifically of the Mod 70/85 version) rocket launchers from ex-NVA stocks following the German reunification. These replaced the older Soviet BM-21 ‘Grad‘, which had been fielded under the designation 122 RAKH 76 in Finnish service. You would be excused for mistaking the RM-70 for a Soviet design, as it best can be described as a Grad-launcher mounted on a Tatra T815 8×8 (yes, the same chassis that is used for the Danish CAESAR). It also fire the same 9M22 rockets as the BM-21, with a range of just over 20 km. The rockets are something of a headache due to their Soviet origin. According to Kesseli, the light batteries are used for tactical fires, which makes sense considering their limited range.

Compared to traditional artillery, the rocket launcher is nice as it provides a huge volume of fire in a short amount of time. A six-vehicle battery of 122RAKH89 is able to put 234 rockets downrange in just twenty seconds (following the firing of a single ranging rocket from each of the vehicles). The downside is obviously the lack of endurance, as once the rockets are fired the vehicles will have to pull back and reload. However, with the increased importance of shoot and scoot-style tactics, the rocket launcher seems set to keep their place on the battlefield, and the prevalence of podded solutions in modern systems has significantly sped up the loading times.

Finland is far from the only country that is invested in the 122 mm as a rocket calibre and that now is finding sourcing new rockets to be something of an issue. Some have countered this by indigenous projects, such as Poland. Poland is both upgrading their BM-21 (though the ‘upgrade’ is rather reminiscent of the ship of Theseus, as they are replacing the chassis, rockets, and FCS) and producing a new family of 122 mm rockets. The latter include the the M-21 FHD which sport a pre-fragmented HE warhead designated F-M-21 OB attached to the new Fenix engine, giving it a stated 41 km range (these are official range figures quoted by Jane’s, though some have questioned the veracity of them). In the same family a stated 36 km range cargo rocket has also been developed with the F-M-21 MK and K1 warheads with five scatterable anti-tank mines or 42 anti-tank submunitions (HEAT-FRAG) respectively, though these do not appear to have entered Polish service (at least not yet). This upgraded WR-40 Langusta will in time be accompanied by the larger HIMARS, which beat the Israeli Lynx to win the WR-300 Homar program. The Polish contract signed last year is for a battalion of 18 HIMARS (plus two vehicles for training duties), and curiously will be of a US standard and not fitted with the usual Polish C2 system for artillery.

DSCN1715
The current generation of Israeli rocket launchers can trace their roots to vehicles such as the MAR-240 (closest to the camera), a somewhat crude conversion mounted atop a Sherman-hull that could fire thirty-six heavy 240 mm rockets in a salvo. One particular feature of this design was that the rocket pod was stowed sideways for transport. Source: Own picture

The aforementioned LYNX is interesting, as it is the latest in a long line of Israeli rocket launchers. Israel is one of few Western countries that throughout the Cold War kept a varied arsenal that included both domestic and imported MLRS systems, including the M270. Much like the Russian arsenal, Israel has invested in a number of different sizes of rockets, though Israel has also invested considerable resources in ensuring that they all fit the same basic launcher. This means that multi-calibre systems such as the LYNX can be used to fit two 40-rocket pods of Grad-rockets, two 13-rocket pod of 160 mm rockets, two 4-rocket pods of heavy 306 mm rockets, or two 2-rocket pods of the Predator Hawk 370 mm rocket. In the smaller calibres, both guided and unguided versions are available, while the larger versions are generally all guided. Without going into detail of all possible rockets, in general it can be noted that HE, penetrator, and cargo (cluster) warheads are available in most sizes, and that the guidance usually rely on GPS supported by INS (similar to the GMLRS). The LYNX system can be mounted on a number of platforms, starting with 6×6 trucks. There has been some success on the export market for Israeli rocket systems, with the older LAR-160 having sold well mainly in South America but also seeing service in the Georgian Army during the Russian invasion of 2008. A mixed-calibre version is in Romanian service as the LAROM 160. This is in effect a conversion of the local Romanian BM-21-wannabe (Aerostar APRA), allowing it to fire both 122 and 160 mm rockets that also include the guided ACCULAR-family. However, the newest exported Israeli rocket systems are found in Azerbaijan and Kazakhstan in the form of the LYNX (the Kazakh version being called Naiza) and in Vietnam where the EXTRA is used for defence of the Spratly Islands.

The really neat trick on the Israeli side is that the pods are made to be able to be used on the M270 as well. Exactly to what extent this modularity works is unclear to me, but if  it really is something approaching plug-and-play throughout the series, it certainly would offer interesting possibilities for a joint-LYNX/M270-force to have a wide assortment of fireworks that could be used throughout the fleet. In essence this would create a similar situation as what is aimed for with the Finnish field artillery standardising on 155 mm as the main calibre, with a large number of batteries being able to perform either tactical or operational fires depending on what munitions they use (though they would still retain one as a main role depending on where in the organisation they sit).

Obviously the Israelis aren’t the only ones to have realised that there are a lot of flexibility to come from being able to fire different kinds of munitions, or that the 122 mm is a bit light in certain cases. Diehl and the Slovak company Konstrukta Defense converted 26 of the Slovakian Army’s RM-70s to something called RM-70 MODULAR which is able to swap out the original 40-round 122 mm launcher to a single M270-style 6-round 227 mm pod (the designation MORAK is also used, though my understanding is that this refers to the more general modernisation program of the vehicles). The system isn’t actively marketed, and it is questionable if it would make sense from a Finnish point of view as making the 122RAKH89 able to fire 227 mm rockets wouldn’t necessarily be of great utility in their current role of providing tactical fires (though the new FCS might be nice).

K239 Chun-Mu ROK Army FB
The Chun-Mu firing a light 130 mm rocket. Even with these low-tech weapons the system offer significantly superior performance to the RM-70. Source: ROK Army FB

Another artillery-happy country that has developed their own answers to the question is South Korea. Their sledgehammer is the Chun-Mu, which sports a modular design mounted on the back of an 8×8 truck, capable of carrying two at a time of the following pods:

  • eight 239 mm HE-rockets with 80 km range and GPS/INS guidance. The warhead is able to be set to delayed action, giving the 4 meter long rocket a certain capability in penetrating hard targets (concrete),
  • eight 227 mm rockets, range up to 45 km. Presumably these are from the M26 family of unguided rockets used by the M270,
  • twenty 130 mm unguided HE-rockets, with the K33 having a maximum range of 36 km and the K30 having a maximum range of 30 km.

It isn’t clear to what extent the system is compatible with the M270, many sources seem to agree that it can accept the MLRS pods while Jane’s is a bit more careful and just notes that they “in appearance are very similar to the 227 mm (12-round) MRL, also deployed by South Korea.” It seems safe to assume that while the high-end systems such as ATACMS and GMLRS might not be integrated at this point in time due to the domestic 239 mm rocket filling that role, the basic pod design and M26 rockets can be used. Whether the modularity works both ways, i.e. if the Korean pods could be integrated onto the M270, is more uncertain.

For those wanting something different, Hanwha has also made a light MLRS system that hasn’t been accepted into service. This is a 70 mm system mounted on the back of a KIA KM45 4×4 light truck, either sporting 40 or 32 launch tubes (the 32-tube one having a faster rate of fire at 4 rds/s). The system feature two different rocket engines, with the standard Mk4 having a range of 8 km, being improved to 10.4 km when using the K223. The warheads include HE, dual-purpose HE (armour and personnel), as well as a cargo rocket with nine submunitions against soft or lightly armoured targets. Guided versions are reportedly also in development. The concept is interesting in a world where military systems tend to just grow in size and weight, as it offers short-ranged tactical fires in a 4.2 ton package (including loaded rockets). However, it is difficult to envision a role for a system with such a limited range and small warhead on the modern battlefield, and it seems set to remain a curiosity (or niche capability at best).

MEFEX 2014
US Marines with Delta Battery, 2nd Battalion, 14th Marine Regiment, fire a reduced-range practice rocket from a HIMARS at a joint combined live-fire exercise March 28, 2014 in South Korea. Source: US DoD/Cpl Lauren Whitney via Wikimedia Commons

As discussed when it comes to tube artillery, having heavy tracked vehicles operating together with units not normally associated with tracked behemoths is bound to cause issues. As such, the need for a wheeled platform was evident in the homeland of the M270 as well The answer was the M142 HIMARS which was developed during the 90’s, with the first deliveries taking place in 2001. Both the US Army and Marine Corps have used the system to great effect in Afghanistan, Iraq, and Syria, where it has built up a reputation especially for long-range pinpoint strikes with guided missiles. In essence, the system is a 6×6 wheeled truck with a single pod from the M270-family. While this obviously means it only has half the firepower compared to a M270, this is balanced by the higher (strategic and operational) mobility, as well as having a generally lighter logistics chain due to being truck-based. Granted, while this is a benefit compared to the M270 when discussing a replacement for the Finnish 122RAKH89, it doesn’t set it aside from competitors such as the Chun-Mu and the Lynx. What does however, is the fact that it is a US-built product making it a given buddy to accompany the M270. Exactly to what extent the two systems sync together is unclear to me, but a safe guess is that synergies are at least not worse than for the non-US competition when it comes to questions such as C2 and supporting equipment. The heavy US investment in the system, especially if the USMC is cleared to go forward with their plan of converting serious numbers of tube artillery battalions to HIMARS, also ensures that it will stay relevant and up to date for the foreseeable future. On the flip-side, the single-pod design and reliance on US munitions means it doesn’t have the firepower and flexibility of the Chun-Mu or the LYNX. However, it should be noted that it is notably lighter and smaller than both the modern competition as well as the 122RAKH89.

For once, the FDF has actually has quite a few routes open when it comes to replacing old ex-NVA indirect fires. Depending on the state of the trucks themselves, modernisation certainly might be an option with different options covering everything from new non-Soviet rockets and minor changes to the FCS up to basically outfitting them to LYNX standard. If, however, the trucks themselves are also starting to show their (considerable) age, a tender for a new platform is likely to see a three-way battle between the LYNX, Chun-Mu, and HIMARS. Which one is the favourite would depend on the future role of the light rocket launcher batteries in Finnish doctrine, and as we have seen earlier as well the Army isn’t necessarily looking for one-to-one replacements for aging systems. The question of optimal calibre, few guided rockets per salvo versus classic massed fire of unguided ones, and not at least cost to procure and operate the systems, will all come into play. The unique capabilities and role in Finnish doctrine of the light multiple-rocket launcher does however mean that we are unlikely to see the 122RAKH89 retire without a replacement.

Nenonen’s heritage, pt 3: The Heavies

While the light howitzers might be numerous, there’s no denying that it is their larger counterparts that are supposed to do the heavy lifting, especially in the key sectors of the battlefield. Up until some fifteen years ago, the mainstay in the Finnish heavy brigade artillery was something designated 152 H 88. This was in fact the common name for a modernisation program that had been applied to a number of different WWII-era howitzers, that had been refitted with a new 152 mm L32 barrel and generally brought up to speed. Two of these were the Soviet 152 mm obr. 1937 howitzer (ML-20) and the 122 mm obr. 1931/37  field gun (A-19) that shared the same carriage, while the third was based on the German Immergrün, the 15 cm sFH 18. In total, well over 120 were modified, being designated 152 H 88-37, H-31, and H-40 respectively. In the early 90’s they got company from a similar number of 152 mm D-20 howitzers (152 H 55) bought from ex-NVA stocks, solidifying the Soviet 152 mm as the mainstay of Finnish heavy indirect fire.

6-tuumaisilla on kiirettä.
The 152 H/37, as the original 152 mm obr. 1937 was known in Finnish service, firing on its former owners during the Soviet summer offensive of 1944. 63 years later the last guns would finally be withdrawn from Finnish service. Source: SA-Kuva

The impact of the large artillery buys from the recently unified Germany can hardly be overemphasised. The total number of field artillery pieces grew by 25 % (the number of rocket launchers tripled), the first self-propelled guns arrived in the form of the light 2S1 and the heavier 2S5, and crucially the ratio of heavy to light batteries shifted. 42 % of the Finnish batteries were heavy following the introduction of the large number of D-20s, and the number of batteries per brigade grew to six (i.e. a regiment with one heavy and one light artillery battalion, both with 18 guns). The ratio of heavy to light batteries continued to rise as the decade went on. However, and this was a key factor, as the millennium changed, almost a third of the Finnish heavy batteries consisted of brigade artillery equipped with old Soviet 152 mm howitzers with a range of approximately 16 to 18 km. While they still could provide tactical fires, they were largely unable to perform operational fire missions. Their weight also made mobility, never a strong suit of towed artillery, abysmal. What finally broke the camel’s back was the fact that the shelf-life of the rounds were starting to run out. Finland usually bought packages of artillery that included rounds and other necessary equipment, and the NVA rounds were starting to run out of time.

First to go was the 152 H 88, which was retired in 2007, which it has to be said was not a bad run for a number of guns developed seven decades earlier. In recent years the 152 H 55 has also been struck from record, leaving a total gap of approximately 200 to 250 heavy howitzers compared to twenty years ago. As noted, the material was old and sported a short range, and at the same time there has been a drawdown in the number of infantry units that needed support. Still, the loss of firepower was felt.

An even bigger loss was the 130 K 54 (M-46). The gun was one of the stars of the Soviet Cold War arsenal, being known for it’s range and accuracy. The ability to send a 130 mm  HE-shell over 27 km was no mean feat for a gun that entered production in 1951, and it played an important role in Finnish service as a counterbattery and operational fires weapon. The last of the nine battalions delivered to Finland were retired a short while ago, leaving just a single heavy Russian weapon in service.

152K89 täyspanos late 2019 Marko Leppänen
A 152K89 of Kainuu Artillery Regiment during a live-fire exercise late last year. When firing with a full charge such as here, the gun is capable of flinging out the standard OF-29 HE-FRAG round to over 27 km. Picture courtesy of Marko Leppänen

The 152 mm 2A36 Giatsint is probably better known in it’s self-propelled version 2S5 (a battery of which was found in Finnish service, but is since retired), and 24 are found in Finnish service as the 152K89. In Soviet service these replaced the M-46 as a higher-level asset for roles such as counterbattery fire. However, the 152 mm is a “difficult” calibre for Finland as the 152K89 is the sole weapon using it, and these guns are also on their way out once the ammunition reaches the end of their shelf-life.

To understand what this all means we must go back to the first post of the series that discussed the role of the different guns and their fire missions. In short, Finland has lost 13 heavy batteries handling tactical fires, and another 9 heavy batteries (one of which was self-propelled) handling operational fires and counterbattery missions, with a tenth over-strength operational fires battery soon to join these. As noted, the situation is not as bad as it looks, as the capabilities of the majority of outgoing equipment were quite poor and developments in related fields have improved the quality of fires overall. However, somewhere there is bound to be a gap, and the Finnish Defence Forces wants to plug it.

To begin with we have the K9 order, which will bring 48 top-notch self-propelled heavy howitzers into Finnish service. It’s hard to overstate the impact these will have on Finnish indirect fires, especially in the higher end of the spectrum. The K9 (possibly 155PSH17, though I can’t remember seeing that designation in official FDF sources) will be organised into heavy armoured howitzer batteries, which are a completely new unit type. The fact that they are 48 would seem to indicate two battalions of 24, finally giving the Army the elusive eight-gun battery that is able to perform the shoot-and-scoot carousel where one battery is constantly on the move while two fire (or then there is just a few extras to cover for when some vehicles are on maintenance, but twelve spares for 36 regulars sounds a bit much).

Another key part of the significantly increased operational fires relative to when the 130K54 and 152K89 were first brought into Finnish service is the 41 M270 heavy rocket launchers (officially designated 289 RSRAKH 06). The range and varied munitions they can bring to bear is in a class of their own in the Finnish arsenal.

 

The K9 being dressed up according to Finnish doctrine and customs.

Together, the K9 and the M270 quite nicely cover the gap in operational fires left by the 130K54 and the 152K89. At the same time, the 132 Finnish-built towed 155 mm guns (about two-thirds of which are the older 155K83-97 with the L39 barrel and the rest being the newer 155K98 with L52 barrel and APU) are also able to do operational fire missions, so there doesn’t seem to be too much of gap in the higher end of the indirect fire capability (especially once the air-to-ground capability of the Hornet-fleet and the upcoming HX-fleet are added to the equation, though they will probably have no shortage of wartime missions so the ground-pounding will probably be somewhat limited).

Side note: at this point someone might ask if one really should do OSINT on the number of own artillery pieces. The answer is that the FDF report them to the world as part of the OSCE’s Vienna Document undertakings, so this isn’t really OSINT as much as basic googling-skills

The problem then is the tactical fires, which as we have now seen largely rest with the to-be-retired 122H63 light howitzer, the Finnish-built 155K83-97 and 155K98, and a limited number of  122 mm RM-70 rocket-launchers (122RAKH89, also from ex-NVA stocks). The exception is the mechanised and heavy motorised (tracked) battlegroups which have a total of 74 self-propelled light howitzers in the form of the 2S1 Gvozdika (122PSH74) for their tactical fire support. The number nicely matches the reported 2+2 battlegroups all getting a battalion of 18 guns each. There has been speculation that the first K9s would replace the 122PSH74, but that seem unlikely for a number of reasons. To begin with, the role of the 122PSH74 is squarely tactical fires, it is in essence a mobile D-30 that provide some cover to the crew. Granted if the battlegroups have the equipment, their artillery batteries could be allocated operational fire missions, but permanently allocating the most powerful guns available to the Finnish Army to individual reinforced battalions does not seem to guarantee the greatest use of them, and fits poorly with the concept of modularity found in the Finnish artillery doctrine. It should also be noted that the unit type is described as “completely new”, and that then-MoD Jussi Niinistö in his official blog clearly mentioned that they are to replace towed equipment.

These are replacing towed artillery that is becoming obsolete and retired during the next decade [the 2020’s]

In addition, it rhymes poorly with the relatively recent modifications to bring up at least part of the 122PSH74 fleet to the new 122PSH74M-standard, which is described in Panssari 2/2014 as including a serious overhaul of the communications equipment as well as various C2-systems, all meant to increase the speed of operations (the upgrade also feature a light-machine gun on the roof of the vehicle, as the importance of being able to fend of enemy infantry has grown with the increased fragmentation of the battlefield).

122PSH74M Pohjoinen 18 Maavoimet FB
122PSH74M firing during exercise Pohjoinen 18. Source: Maavoimat FB

It is important to note exactly how different the two self-propelled guns are. The 122PSH74 tips the scale at 15.4 tons and has a footprint of 7.3 x 2.9 meters, while the K9 weighs in at 46.3 tons with a footprint of 12.0 x 3.4 meters (hull length being 7.4 m). While the 122PSH74 isn’t exactly an off-road jeep, the light gun vs. heavy gun comparisons certainly are at play here as well as for their towed counterparts, with the operational mobility being quite a bit simpler to handle when you need a trailer rated for 16 tons compared to one rated for 45+ tons.

So then we are back to a situation where there are a number of modern 155 mm guns (and some heavy rocket launchers) handling the operational fires and a large number of light guns being responsible for tactical fires. With the light ones being on their way out, bringing us back to the questions asked in last post.

The light guns, including both 122H63 and 122PSH74, currently make up something between 75 to 80 % of the total force (depending on how many K9 have arrived and whether you count the 152K89 or not). Using current equipment, as discussed in the last post the towed 155K83-97 could trickle down to cover up the 122H63-gap, and the 155K98 could continue to provide firepower for the operational brigades. However, there is still a few places were things are looking thin:

  • The four battalions of 122PSH74 that support the mechanised and motorised battlegroups,
  • The reduction by perhaps 85 % in the number of guns supporting regional and local troops following the withdrawal of the 122H63,
  • Whether the towed 155K98 really is the weapon of choice for the operational brigades.

The answer to the first is probably more K9s, at least partly. Finland has an option for more vehicles, which would simply continue deliveries after the current batch of 48 vehicles have been shipped. How many is an open question, as another four battalions (especially if they are 24-gun strong) seem prohibitively expensive. Getting two battalions (i.e. another 48 guns) for the two mechanised battlegroups might be doable.

Conscript driver training oct 19 PSPR FB
The first conscripts started training on the K9 Moukari last year, replacing the 122PSH74 as the training platform at the peacetime Jääkäritykistörykmentti (Jaeger artillery regiment). Note the sheer size of the vehicle compared to the crew. Source: Panssariprikati FB

And that leaves two motorised battlegroups and either the operational brigades or the regional units needing more firepower. Looking at the requirements, getting a new towed piece (or transferring the 155K98) to the motorised battlegroups likely doesn’t cut it. The same can probably in all honesty be said for the operational brigades. At least once it is clear something new has to enter the organisation at some level, one can do worse than insert the new stuff at the top and let the old cascade down.

 

Which brings us back to everyone’s favourite emperor-acronym, Nexter’s CAESAR (CAmion Equipé d’un Système d’ARtillerie). The idea is rather simple, and there is something very Finnish about of marrying what is in essence a tested gun (the towed TRF1) to a truck chassis to give the gun shoot-and-scoot capability. I discussed the system at length in an earlier artillery post, so without rehashing everything again:

  • It is a proven design, including having seen combat in harsh conditions,
  • It offers the firepower expected from modern 155 mm L52 systems,
  • The ability to relocate on it’s own wheels adds significantly to both strategic and operational mobility,
  • The French decision to over time let the CAESAR replace all 155 mm systems in service (i.e. the tracked AUF-1TA and the towed TRF1) means that there is a long-term commitment from France to keep the production line (as well as modernisation programs) up and going.

This combination, including the last part, is important, as surely someone will point out the benefits of the Israeli ATMOS, the Mandus Group BRUTUS, and the Swedish Archer. The ATMOS is most closely related to the CAESAR when it comes to the basic concept, while the Archer is a more high-end system with it’s 21 pre-loaded rounds in the magasin. The BRUTUS is the bigger brother to the 105 mm Hawkeye we discussed last time around, and sport a low-recoil 155 mm howitzer which allows the carrier platform to be smaller (and the company to make the obvious #IdesofMarch-jokes). All systems, including the Archer as was shown at DSEI last year, are modular and to a certain extent carrier agnostic. While the differences between the systems are small enough that it will come down to how their respective strengths and weaknesses are evaluated rather than to one of them being objectively better than the rest, for some there isn’t the kind of long-term commitment to the projects by the host countries as is enjoyed by the CAESAR, while others are just now entering service/being tested.

The general drive towards wheeled platforms for artillery is interesting, and something that Watling spent quite a bit of time on in theRUSI report:

However, for every eight [tracked] AS90 howitzers, there are a further six command and support tracked vehicles in the battery, a tactical group of at least five vehicles and the necessary CSS [combat service support] to maintain the guns, repair them when they throw tracks, or recover them when damaged. An Armoured Infantry Brigade meanwhile includes 56 Challenger 2 MBTs, while the brigade also needs to move bridging equipment, its infantry fighting vehicles and CSS assets. The British Army has between 71 and 92 HETs [M1070F tank transporters] available.

[…]

There is a trade-off between wheeled systems, which can self-deploy and have significant strategic mobility, versus tracked platforms, which retain much greater tactical mobility, especially in wet and uneven terrain. It is important to note that the differences between these platforms are declining […] This has led the IDF – despite fighting in a small area – to conclude that the operational reach of wheeled artillery is disproportionately valuable to the tactical mobility of tracked guns. It must be noted that they face a much less significant counter-battery threat, and therefore can have less protection. Wheeled platforms, however, require fewer specialised CSS elements and can therefore move with a smaller logistical tail. As a result, they reduce the overall number of chassis needed to deliver an effect.

What Watling doesn’t mention in the quote above is that this translate directly into money. The difference between the new-built Danish CASESARs coming in at 2.7 million Euro per piece compared to the Finnish ex-ROK K9s at 3.0 million Euro a piece isn’t huge, usual caveats about these not being apples-to-apples comparisons apply (though this is also a good time to point out what a good price PVLOGL got). However, the difference in operational costs most likely are very different (no-one’s going to release anything resembling comparable figures for those, so this is an educated guess based on training requirements, maintenance needs, weight, supporting vehicles/heavy loaders, …). The decision to use a truck-based resupply solution for the K9s also make the argument of the superior tactical mobility of tracks compared to wheels somewhat less persuasive.

One interesting aspect of the CAESAR is the difference between the baseline French (and earlier export) versions, and the latest Danish vehicle that is mounted on the significantly larger classic Tatra T815 8×8 compared to earlier 6×6 carriers. This gives the vehicle not only significantly better off-road mobility, but also a larger number of rounds being carried on the gun (30 being the new standard as opposed to 18 on the French 6×6 version. This can be further increased if a lower number of charges are carried), a new protected cabin (STANAG 4569 Level 2a/2b), and the munitions handling system seen in action in the video above. A new muzzle velocity radar and a thermal imaging sight for direct fire are also fitted.

Sisu E15 TP-L Leguan bridge Saber Strike 18 - Maavoimat FB
You don’t always need tracked platforms, as the Sisu E15 TP-L Leguan bridge layer shows here at the Saber Strike 18. Source: Maavoimat FB

The CAESAR is in many ways the epitome of the kind of good-enough system that the Finnish Defence Forces likes. Especially in cases where the rest of the unit also runs largely on wheels, the tracks and size of the K9 is making things somewhat complicated. An interesting comparison is the Leguan-bridge, which the Finnish Army uses on the Leopard 2-chassis for heavier units and mounted on a Sisu all-terrain truck for lighter ones. There’s no doubt that a CAESAR, or another wheeled self-propelled gun, would feel right at home in the Satakunta Artillery Regiment of the Pori Brigade.

To sum it up, in such a scenario the Army would eventually post-122 mm howitzers (~2030) sport a tube artillery consisting of 48 K9 dedicated to higher-level operational fires, 36 K9 for supporting two mechanised battlegroups, 72 to 108 wheeled SPGs (four to six batteries) for supporting the other operational battlegroups and brigades, and 130-ish Finnish-built towed 155 mm guns to provide the heavy hitting power of the regional troops. The bottom end would then need further 120 mm mortars or a new light gun, as per the last post.

charlie_battery2c_1st_battalion2c_12th_marine_regiment2c_fire_an_m982_excalibur_round_from_an_m777_howitzer
Marines with Charlie Battery, 1st Battalion, 12th Marine Regiment, fire an M982 Excalibur round from an M777 howitzer during a fire support mission in Afghanistan in 2011. Source: USMC via Wikimedia Commons

And just when things started to look quite straightforward – wholesale K9-introduction is too expensive while no-one builds a basic towed gun anymore, let’s go wheeled – there suddenly just might appear the possibility for another cheap surplus buy, as the USMC proposes that they get rid of the majority of their tube artillery. Provided that the suggestion passes through the political hurdles (something that is far from certain) and that the equipment isn’t just mothballed for future use, it might suddenly mean that there is 96 surplus M777A2 towed howitzers up for sale. And there aren’t necessarily too many interested buyers.

The M777 is one of those modern towed howitzers that are built to be as light as possible, which is reflected in the price. 2009 the USMC bought a batch of guns (together with the Canadian Army the total order was 63 M777A2) for 1.9 million USD per gun. If, and this is quite a big “if”, the whole or better part of the 96 gun batch eventually are sold as surplus, they would nicely make up the replacement for the heavy brigade firepower lost with the short-ranged 152 mm howitzers. Buying more towed artillery at this point certainly does sound like something of a step back. However, swapping out the 152H55 for the M777 would certainly still be an improvement when it comes to mobility, based on the simple fact that the M777 weighs in at 4,100 kg, well below the 5,700 kg of the 152H55 (and just above a quarter of the 16,000 kg of the longer-ranged 155K98). The M777 with it’s L39 can also throw unassisted HE projectiles out to 24,700 meters compared to the 17,400 meters of the 152H55, which though still short of the 27,000 meter range of the 155K98 would provide a serious boost in brigade-level firepower. Swapping towed howitzers to (lighter) towed howitzers would also be a relatively simple change in the OOB.

MVH1 2015 Maavoimat FB
Even when it comes to towed heavy artillery, not all are created equal in terms of mobility and ease of handling, something that is often forgotten in the towed vs. self-propelled debate. Source: Maavoimat FB

In this scenario, the domestic 155K98 and 155K83-97 would be used by the operational brigades, with the M777 replacing the outgoing regional brigade artillery and possibly a handful of the most important of the 122H63 batteries. This still leaves the question of a 122PSH74 replacement open (self-propelled heavy mortars, anyone?), and is dependent on the highly speculative possibility of a cheap buy of the better part of the USMC guns that might be retired in the near future. However, the underlying conclusion is that there is bound to be a gap in firepower somewhere, and I would be highly surprised if there are no new 155 mm systems that enter Finnish service within this decade.

Nenonen’s heritage, pt 1: The Mission

The future of Finnish artillery is a topic I’ve touched upon earlier as well, in particular this post from a few years back. Much of what I wrote back then is still valid, but as the topic is complex, and certainly deserving of deeper study than a single post thrown together on a train provides, the time has come to revisit it. The two key sources here will be The Future of Fires, a RUSI report by Jack Watling from last year that looks at the situation from a UK-angle but with several aspects that carry over to the general artillery discussion, and Tykistö taistelee tulellaan, a Finnish book from 2017 on the first century of Finnish artillery tactics written by colonel (ret.) Pasi Kesseli, PhD. As is usual with Finland, there are serious gaps in open sources due to the strict focus on operational security, but Kesseli does cover the development from 1990 and up until the current day in approximately ten pages, which provide some interesting insights into Finnish artillery doctrine and organisation, information that can then be fitted into the more general picture provided by Watling.

Observers Arctic Shield 18 KAIPR Maavoimat FB
A Finnish forward observer team made up of conscripts from Kainuu Brigade during exercise Arctic Shield 2018. Source: Maavoimat FB

The current Finnish doctrine divide fires into tactical and operational levels. The tactical fires aim at directly influencing the flow of battle either immediately or within a very short time span. In practice, this means that the firing ranges are often shorter, and the fire missions include both destruction as well as suppression of targets. The missions are usually handled by the organic artillery and mortar units available at the brigade level or below, though support by for example light rocket launchers (122 mm RM-70, locally know as 122 RAKH 89) can also fill the role if so required. Fire direction is also usually handled by the organic C2, sensors, observers, and reconnaissance assets. See Eyeonscandinavia’s post for a more detailed discussion on the role of the observers.

Operational fires on the other hand deals with the critical systems and nodes of the enemy, meaning that if they can be affected the capabilities of the enemy to carry out successful military operations are suffering. These are often found further back from the frontline, but it is important to note that as opposed to earlier Finnish doctrine which did differentiate between tactical and operational fires based on range, the difference is now based purely on the value of the target. This is roughly in line with Watling’s report, which grapple with the question of fires based on four different mission sets:

  • Breaking up enemy force concentrations,
  • Providing fire support to enable manoeuvre,
  • Suppression of enemy fires (counterbattery fire),
  • Striking high-value targets.

Of these, the first two can be seen as tactical fires according to Finnish doctrine, while the second two are operational level missions.

The high-end indirect fire system in Finnish service is the M270 MLRS, locally designated 298 RSRAKH 06. Source: Maavoimat FB

The Finnish Army is decidedly artillery heavy, featuring a serious amount of organic indirect fires at all levels starting with the battalion. The core unit in the artillery is the 18-gun battalion, consisting of three 6-gun batteries. These are either light (122 mm D-30 howitzer, locally designated 122H63) or heavy ones (using either Soviet-built 152 mm or Finnish 155 mm equipment), with the whole artillery battalion always using the same calibre. The battalion is treated as a single firing unit, though certain fire missions can be handled by either a single or two of the battalion’s batteries. A key detail is that the battalion has a robust enough C2-system that it can control fire from several battalions. This is based on the M18 combat engagement system provided by domestic supplier Bittium, and which is seen as a key enabler in allowing the Army to conduct dispersed operations at a rapid pace, something which the artillery arm is taking advantage of. Already as part of the now obsolete Brigade 2005 structure any artillery battalion could direct fire from not only it’s own guns, but from another two tube or rocket artillery battalions as well. How many firing units can be controlled by a single battalion’s fire direction centre under the current organisation is not open information.

This modularity is obviously not unique to the artillery, but is part of a more general trend in the Finnish Defence Forces to be able to react to changing situations by tailoring the forces under a given command to meet any particular situation, including combining different capabilities and unit levels (local, regional, operational) to produce the desired order of battle to meet requirements. The switch to more robust baseline units to be able to handle missions at lower levels and be able to absorb some losses without losing combat capability is not unique either, but is also mirrored in how infantry units have grown in size.

The towed batteries which make up the vast majority of Finnish indirect firepower rely on dispersion for protection, spreading out the artillery battalion over an area that can be as wide as 15 by 40 kilometers, with individual guns preferably at least 500 meters from each other. In practice, this reduces the battery from a single high-value target to a number of individual targets of lesser value. Another key aspect in improving the survivability of the batteries have been the continuous improvement of the organic entrenchment capabilities of the units, including heavy vehicles to prepare gun positions and close-in defence positions for the riflemen. The latter is also increasingly important as under the most recent doctrine (Maavoimien uudistettu taistelutapa) there is a focus on having the guns placed close to the front and having stored “an abundance of rounds” in these forward fire positions, to be able to cause the enemy a large number of casualties and disruptions from the get go. The obvious downside to dispersed positions and forward locations is the risk of the individual guns being overrun by advancing enemy units, as their location makes them vulnerable and a concentrated defence becomes more difficult.

While many of the concepts presented in Watling’s paper largely correspond to current Finnish artillery doctrine and the general trends identified in Finland, there is a key difference, namely the relatively narrow frame of reference provided in looking at a UK division fighting in a defensive expeditionary war as part of a NATO corps structure. While this is comparable to the question of what kinds of fires Finland might have a need for in the direction(s) that is the focus of operations, the broader Finnish question include what kind of fires are needed in secondary directions as well. The modularity is also more critical from a Finnish point of view, to be able to quickly create a concentration of fires in a certain area. Here it should also be noted that the Finnish force structure above the brigade level is not public information, and hence it would be incorrect/uncertain to talk about division or corps assets within a Finnish framework. However, the Finnish system does sport a number of high-end systems which are described as not being part of the brigade structure, and the role of these higher-level assets correspond to those associated with the British division and corps assets (including both providing additional tactical firepower when the need arises as well as providing operational fires). The most probable Finnish organisation is that these higher level assets are found in independent battalions, which are then attached to higher level formations as appropriate.

1280px-1_yorkshire_regiment_281_york29_battlegroup_conducting_live_firing_during_exercise_prairie_lightning._mod_45158826
An AS90 from the King’s Royal Hussars during an exercise in Canada. Note the shorter barrel compared to more modern systems such as PzH 2000 or the K9. Source: Sgt Mark Webster RLC/UK MOD

The current British top-of-the-line tube artillery is the two regiments of AS90 self-propelled 155 mm howitzers. As opposed to many newer systems such as the K9 and the PzH 2000, the AS-90 is equipped with a shorter L39 barrel. A British artillery regiment is in fact corresponding to battalions in other countries, although the British Army uses an eight-gun battery structure, giving the regiment 24 guns. This is something that the Finnish Army also has studied in detail, and the idea was given serious thought in the late 90’s as it would have made it possible to keep performing fire missions while constantly having one of the battalion’s three batteries on the move. In the end, it was opted against this setup, amongst other things due to the difficulty in finding suitable firing positions for a dispersed eight gun battery.

Watling envisions a very similar kind of tactic for the British regiments, although he calculates with firing ranges for 52-calibre howitzers and not for the current AS90:

Across the 24-gun group, with two guns firing on each fire mission, and the firing pair handing over at two-minute intervals, the group could prosecute four separate fire missions delivering eight rounds per minute to each, and sustaining this rate of fire – assuming a magazine capacity of 40 rounds per gun – for 30 minutes. If the battery is reduced to three sustained fire missions then six guns can replenish their magazines so that the rate of fire can be sustained as long as ammunition continues to be moved forward, as per the existing carousel system for resupply. The elegance of this system is that for an enemy artillery commander, they would only observe two isolated firing positions at any given time, which would change frequently.

[…]

If such a regiment were deployed 12km behind the contested zone, its rearmost gun would be able to deliver effects 24km into the contested zone, while the regiment could deliver MRSI 16km into the contested zone, thereby remaining able to deliver – given a six-round salvo per gun – between 144 simultaneously impacting and 3 salvos of 48 155-mm shells to any point within the operating area of an opposing MRB.

Watling’s conclusions are that no high-readiness brigade can operate on the modern battlefield with less than 24 155 mm self-propelled guns, as these are the bare minimum for the tactical fire missions that can be expected when operating within a NATO structure where additional divisional and corps fires can be expected to handle the counterbattery role and other operational level missions. For a whole divisional support group that also would handle some of these operational tasks, the need would be a minimum of 72 guns, as well as a regiment (battalion) of heavy rocket launchers. For these to be able to go toe to toe and match the Russian capabilities, different kinds of modern area effect and sensor-fused (sub-)munitions are required to achieve a higher effect than traditional unitary warheads. The latter notion isn’t uncontroversial, as it partly runs counter to the Oslo Convention on Cluster Munitions (CCM), of which the UK is a signatory (as opposed to Finland, Russia, and the USA). However, it is notable that if encountering a corresponding Russian unit, a British division of today would be outgunned both in numbers as well as firing ammunition that produces a less lethal effect compared to their Russian counterparts.

Giatsint
The 2A36 Giatsint-B (152 K 89) is the last Russian heavy gun left in Finnish service following the recent withdrawals of the 130 K 54. Source: Kainuu Brigade FB

However, with 72 heavy guns providing operational fire missions, Watling feel that 155 mm is overkill for the tactical supporting fires. Currently the light fires in UK units comes from the ubiquitous 105 mm L118 light gun, which is towed. As Watling argues for all guns to be self-propelled, and as the battalion support gun in British service will need to be airmobile (i.e. below the eight-tonne lift capacity of a Chinook), he notes that the most viable solution would likely be that battalion-level fires would be provided by a 120 mm mortar on a light vehicle such as the Supacat. The firepower of this solution is not completely unlike the Swedish solution to provide battalion fires with a twin-barrelled 120 mm mortar mounted on a CV90 chassis, though the reasoning behind is rather different (Sweden having arrived at the solution by focusing tactical mobility as part of the mechanised battlegroup rather than higher level mobility). As there is no Finnish requirement for airmobility for the battalion fires, especially not for the local forces, this line of reasoning has less relevance for the Finnish situation. However, if we for a moment stays with the UK divisional example, Watling end up with the following total:

• One battery of anti-tank guided weapons per battlegroup.
• One battery of 120-mm mortars per battlegroup.
• 72 155-mm 52-calibre howitzers with anti-armour area-effect munitions or DPICM.
• A regiment of MLRS with a compliment of sensor-fused sub-munition dispensing
rockets, and LRPF.

These are then supported by corps-level assets, but contrary to many NATO-centred analyses Watling actually does not expect much in the way of support from the air during the early stages of the conflict, a starting assumption that does mirror the Finnish situation.

As noted, it isn’t possible to make an apples-to-apples comparison for a Finnish order of battle as the Finnish wartime OOB is a) secret, and b) less formal in nature than a British expeditionary force would be. However, it is notable that during the first decennium of the millennium (newer numbers are secret) the standard according to Finnish doctrine was that an attacking brigade would be supported by an additional 72 to 108 guns or rocket-launchers from higher assets in addition to the brigade’s organic 18 gun battery, numbers that come very close to the divisional support group argued by Watling. 72 is by the way an interesting number in that it is a multiple of both 18 and 24. We’ll be back to multiples of 24 in a week or two, as one has appeared in an unexpected place.