The European Fighter, Pt. 2

25 years ago Finland was looking for an air superiority fighter to replace the ageing J 35 Draken and MiG-21Bis which dominated the ranks of the air force. As is well known, the choice fell on the F/A-18C Hornet, which for the first two decades served solely in the air-to-air role (officially designated F-18C by the Finnish Air Force). But the times they are a-changin’, and with MLU2 the multirole potential was finally brought into play in the Finnish Air Force as well. This also means that for HX to meet the matching set of capabilities, it must be able to fulfill different roles, including air-to-air, air-to-ground, ISR, maritime strike, and stand-off precision strike. The last is treated as a unique requirement by the Finnish Defence Forces, as it requires a completely different setup compared to ‘ordinary’ air-to-ground missions.

A crew chief from the Finnish Border Guard’s AW119 Koala watches as an Italian F-2000 Eurofighter touches down in Finland for the first time ever. Source: Own picture

However, while the aircraft will certainly occupy a host of roles, there’s little question that air defence still is and will remain the core mission of the Finnish Air Force. The ample availability of indirect fire, coupled with the planned acquisition of more accurate and longer-ranged munitions for both barrel and rocket artillery, means that there are several ways to kill anything moving on the ground. But even with the upcoming GBAD program, getting proper air defence coverage at medium and high altitudes is another issue. Here the teamwork between air and ground-based systems is a must, and HX will be the air component at least past 2050.

This suits the Eurofighter consortium just fine. While the marketing slogan might be that it is “a platform for any weapon, any mission”, it is clear that the concept owes much to the requirement of an air defence fighter that emerged a number of decades ago. This is most visible in the thrust-to-weight ratio of 1.15, well above both the F-15 and the F-16, which together with the aerodynamically rather clean design gives the aircraft an edge over the competition when it comes to raw speed and altitude performance. Over Syria and Iraq, Typhoon packages handle deconfliction of the air space by simply transiting above the rest of the aircrafts operating in the area, using their speed and endurance to quickly transit between holding areas and targets.

The speed is and obvious benefit in the QRA role as well, a key part in the life of both the Finnish as well as for the partner nations. This is where the Typhoon really shines. Being airborne in just over 1,000 feet (305 meters), the fighter is supersonic within two minutes from scramble. Importantly, even a light air-to-air load includes four semi-recessed Meteor and two ASRAAM or Iris-T, with the full load of six Meteors and two short-range missiles (or four plus four) already starting to put hurt into the arms budget of most air forces if more than a handful of fighters are to be launched. Compared to the current full F-35 load (including external stores) of four shorter-ranged AIM-120C AMRAAM and two AIM-9X, that is a significant difference both in quantity and quality (the F-35 is slated to receive upgrades to the capacity at some point in the future).

HN och EF
Part of the German delegation watches as the Finnish F/A-18C Hornet solo display passes above. Source: Own picture

Meanwhile, the Typhoon is proving to be no hangar queen (Germany being the exception, but that is a reflection of the readiness of the German Defence Forces as a whole). The preceding Italian Typhoon rotation to BAP which took place in 2015 sported a 99,4% availability rate, and during the recent NATO Tiger Meet the Eurofighter had the best mission availability rate of all involved fighters. As test pilot Paul Smith puts it:

If you put fuel and weapons on it, it just keeps flying.

The combination of large amounts of advanced weapons carried, long-ranged sensors, and a significant endurance (further improved by the large drop tanks routinely carried on stations 3 and 11) means that the aircraft in high-end exercises often is the first aircraft in and the last aircraft out. The semi-recessed Meteors and light outer stations (no. 1 and 13) also mean that even in a heavy air-to-ground load, the aircraft has four long-range and two short-range air-to-air missiles to defend itself or other parts of the airspace.

But while the fighter has a clear air-to-air pedigree, recent upgrades has made it a true multirole platform. The British Typhoons have currently been hard at work employing the light Brimstone anti-vehicle/low-collateral damage missile and the Paveway IV laser/GPS/INS-guided 500 lbs (230 kg) bomb over Iraq and Syria. The Brimstone is carried on triple launchers, while the Paveway IV can be carried on single- or twin-launchers, leading to an impressive amount of weapons a single aircraft can bring to the battlefield. Instead of the Paveway IV, the German Air Force carry the corresponding GBU-48 Enhanced Paveway II.

However, Finland has never seen the prime role of the Air Force as being that of quashing large amounts of enemy armour, so the Brimstone might not be high on the wishlist. More interesting are the cruise missiles of the aircraft, with BAE Systems marketing both the Storm Shadow (used by RAF in the recent Syrian strikes) and the Taurus KEPD 350 (integrated onto the German Typhoons). Both are very much the kind of weapon that will be acquired to fill the void left by the AGM-158 JASSM. The really interesting weapon is however the SPEAR 3, which is currently in flight testing on the Typhoon.

Outwardly, the SPEAR looks rather like the Brimstone, but while the Brimstone has a rocket engine to boost it up to speed after which it coasts along until hitting something, the SPEAR is a cruise missile with pop-out wings and a small turbojet. This gives it significantly more range and the ability to fly at low altitudes, and while the Brimstone is a AGM-65 Maverick replacement and Storm Shadow is a JASSM replacement, the SPEAR is something completely new. The low weight (100 kg) and triple racks means that they can be used in larger numbers compared to the ‘silver bullet’-role that traditional cruise missiles occupy. At the same time, their stand-off range and smart attack modes (such as synchronised attacks from multiple directions) means that they can reach targets which earlier would have been considered too far away or too well defended. The warhead might be too small for hardened buildings, but will nicely take out vehicles, light buildings, and small vessel (or disable elements of capital ships).

Good examples of these kinds of sub-strategic targets are command posts, air defence radars, and high-value vehicles (armoured or soft-skinned). To further highlight the interest from the Finnish Defence Forces for this kind of ability to “shape the battlefield”, as the BAE Systems marketing line goes, it is notable that the targets for the Finnish JASSM living firings earlier this year were shaped suspiciously like Russian Iskander ballistic missile launchers or long-ranged SAM-launchers. While the cost of JASSM likely make it prohibitively expensive in a SAM-busting role, the SPEAR would be highly efficient. RAF is already planning on taking up the SEAD/DEAD role with the Typhoon/SPEAR-combination. The flexibility of the weapon would mean that the SPEAR would provide the Finnish Defence Forces with a SEAD, anti-armour, and anti-ship capability in a single stroke. All of these are mentioned as capabilities which the Finnish Air Force is looking at for HX, but which might prove too niche for dedicated single-role weapons.

Typhoon scale model.JPG
The dream – at least for BAE Systems and their partners. Source: Own picture

But from where does a small country such as Finland get adequate targeting data for long-range cruise missile strikes? Here the Eurofighter consortium plays one of their unique selling points, in that the varied partner companies sport a large number of different capabilities, one of which is the Airbus Intelligence Defense and Space-division. This is one of the prime suppliers of satellite imagery, including synthetic-aperture radar ones. BAE Systems notes that a Finnish Typhoon-buy could include an unspecified satellite intelligence package. This shines an interesting light on one of the more curious air show-tweets made by any of the HX-contenders.


A Catalogue of Arms: The Weapons of the HX-project

A subject which I’ve touched upon in my earlier posts, is the fact that the choice of fighter for HX also largely dictates which weapons the Finnish Air Force will use. Naturally, any weapon can be certified on any fighter, as long as they are within weight and size restrictions, but the process is neither simple nor cheap. As such, the large operators usually call the shots, their choices usually being domestic weapons suitable for the missions they prioritise. There are also a number of special cases, such as e.g. Saab and Boeing producing both aircrafts and some of their weaponry.

So, what would Finland then get with each of the different HX-candidates? Below is a simple table I’ve collected, with weapons integrated on each aircraft. The weapons are divided by type, and include both weapons currently available as well as planned weapons. For the future weapons I’ve only included weapons that the manufacturer or operator states will be integrated (edit: note that some of these planned integrations, especially in the case of the F-35, are still unfunded). The exception is for Gripen, where the Brazilian Air Force has not yet disclosed which weapons they’ve chosen for the aircraft. In this case, the weapons listed are based on those displayed on the mock-up, when it toured in Brazil this spring.

Some weapons are likely to appear on certain aircraft sometime in the future, such as the Meteor being integrated on the F-35, but as long as these aren’t officially confirmed, I’ve left them out. As said, if Ilmavoimat really wants something, it can most probably be added for an extra cost, but this table is what we would get “for free” with each aircraft.

HX-weaponsA few comments:

Incendiary bombs are largely similar to napalm, but aren’t called that as their chemical composition is different. Cluster bombs are available in a number of different variants, where the Mk-20 (247 submunitions) is meant for anti-tank work, and the CBU-59 (717 submunitions) and CBU-101/-105 are used against ‘soft’ targets (unarmoured vehicles, troops). Many of the modern laser- and GPS-guided bombs feature wings, which means that they can be dropped from some distance, and then glide towards the target. Cruise-missiles differ from these, in that they have some kind of engine that lets them fly further than the unpowered glide bombs. Some cruise missiles can also be used as anti-shipping missiles, and the other way around. As sending a large cruise missile dimensioned to blow up a reinforced bunker to take out a single tank is a waste of money and explosives, some planes carry smaller missiles that can be used against vehicles. Anti-radiation missiles are specialised weapons made to home in on enemy radars, to knock out the enemy’s groundbased air defences.

The Eurofighter reflects its international pedigree in that some nations, especially Great Britain, want their own weapons on it, and as such it has two options in a number of slots. The Rafale is an example of the opposite, featuring almost exclusively French weapons. Due to their small production runs, these are sometime very costly, with e.g. the AASM (the French equivalent to a JDAM) rumoured to cost up to twelve times as much as its US counterpart.

A British Eurofighter Typhoon featuring 1,000 lbs Paveway laser-guided bombs and air-to-air missiles taking off during operations over Libya. Source: Wikimedia Commons/Sgt Pete Mobbs/MOD

Gripen features an interesting mix of Brazilian and European weapons. Of note is that if Finland would buy the Gripen, we would be one of the larger operators, giving better leverage if we wanted to integrate new weaponry onto it (this is not to say that they would come for free, only that our leverage would be better). The main drawback of the Gripen is the (current) lack of a dedicated anti-vehicle missile, with earlier versions having featured the AGM-65 Maverick.

Edit 24-07-2015: After having received input from Twitter-handles Gripen News and Obby Noxus, I’ve updated the table and texts accordingly. Sorry for the incorrect data given earlier, it was completly due to my own fault, and thank you to Gripen News and Obby Noxus for their help!

With regards to the F/A-18E/F Super Hornet, it seems like the US Navy decided to simply certify the aircraft for more or less every weapon in their arsenal. A number of these, marked with *, are already retired, and others are on their way out (such as the AIM-7 Sparrow). Of interest is that it is the sole platform with a mining capability. The ability to have two aircraft take off and after a few minutes close a strategic sea lane by dropping four heavy sea mines would be of marked value for Finnish defence planning, especially with the reduction in hulls with a mining capability that the navy is facing. In fact, it is interesting that the Finnish Air Force has not bought Quick Strike mines for the current Hornet-fleet, as they are also certified to carry it.

The F-35 is something in between, with a number of different options, although not quite as many as the Super Hornet. Its anti-shipping missile is a bit special, the Norwegian Joint Strike Missile featuring an infrared seeker instead of radar as all the others anti-shipping missiles in the tables. The IR-seeker is harder to distract than radar seekers, but feature a shorter range a poorer performance in adverse weather (rain, snow, and fog).

Does any single aircraft then have a marked advantage? I would say no. The Rafale is at a disadvantage, due to its reliance on uniquely French weapons, with their higher cost and poorer availability. The Super Hornet brings some interesting options to the table, but I find it hard to believe that Finland would buy either rocket pods or incendiary bombs, so the only real difference is the sea mines. The overall differences are small, and if mining capability suddenly is a must-have, it could probably quite easily be integrated on any of the other platforms. In fact, I would imagine that the US Navy is already thinking about getting it for the F-35C.

As is the case with the aircrafts themselves, their weapons suites all have their own strengths and weaknesses. In the end, these are but one of the many factors that will have to be compared and judged, before it can be decided which of the potential HX-fighters is the best choice.

The HX-project Preliminary Report, pt. 2: Capabilities and Fighters

This is part two of my look into the preliminary report on the HX-project, which is aimed at finding a suitable replacement for the F/A-18C Hornet in Finnish service. This part will focus on the interesting stuff: the capabilities to be replaced, and the alternatives that might replace them.

The Capabilities

The capabilities the Hornet provides are, according to the report, as follows:

  • Airspace surveillance and control
  • Defensive counter-air (DCA)
  • Offensive counter-air (OCA)
  • Interdiction strikes
  • Battlefield air interdiction (BAI)
  • Maritime strike
  • Intelligence, surveillance, target acquisition, and reconnaissance (ISTAR)

Of note is here is that when the Hornets were introduced in Finnish service, it was as a pure interceptor/fighter aircraft, and only later (with MLU 2) did the potential for interdiction strikes start to feature prominently. In fact, it can be argued that out of the seven roles described above, the current Finnish Hornet-fleet is oriented towards three (airspace surveillance and control, DCA, and interdiction strike), is capable of handling two somewhat satisfactorily (BAI and ISTAR), with two being more or less outside of the current scope of capabilities (OCA and maritime strike). It is not that the Hornet can’t perform maritime strike and OCA-missions, but rather that a combination of lack of suitable weapons and a focusing in training on other missions leaves gaps to be filled (note: this is based on how air force training is described in open sources, it is possible that e.g. OCA receives more attention than is openly acknowledged).

Scale model of JAS 39E Gripen as displayed by SAAB at Turku Airshow this spring. The weapons and sensors shown on the model would make the aircraft capable of all missions listed, and are, from the wingtip inwards: IRIS-T short-range air-to-air missile, Meteor long-range air-to-air missile, RBS15F long-range anti-ship missile (with secondary ground-attack capability), GBU-39 Small Diameter Bomb precision-guided glide bombs, and an electro-optical sensor/recce-pod. Source: Author

Of interest is especially the focus placed on OCA, which is discussed over multiple pages in the report from chapter 4 and onwards. The reasoning behind this is that air superiority can seldom be achieved through DCA only (i.e. shooting down enemy aircraft entering our air space), but instead this needs to be supplemented with OCA (attacking enemy aircrafts and airbases in their own territory). Traditionally, OCA has meant striking enemy airfields through the use of multiple supporting formations of aircraft (escorts, electronic warfare aircraft supressing enemy air defences, strike packages for taking out enemy runways and hangars, and finally an aircraft doing battle damage assessment by photographing the target after the strike), and as such these kinds of strikes are both high-risk and require specialised weapons and a high level of pilot competence. The number of aircraft involved would also mean that a significant proportion of the whole Finnish air force would be tied up in a single mission.

The increasing capabilities of modern multi-role fighters and the use of stand-off weapons and sensors mean that the absolute number of aircrafts used for an OCA strike can be decreased somewhat. However, I must still admit that I was surprised that this seems to be a prioritised field. It is possible that this is seen as the most demanding of the missions, and that if the air force pilots becomes proficient in multi-package strikes on enemy airbases, this skill set (and weaponry) can easily be used also for the “lesser” missions (such as striking strategic bridges or enemy surface units, neither mission of which is dealt with in any detail in the report).

Another mission that gets a thorough analysis is electronic warfare and especially suppression of enemy air defences. SEAD, as it is usually abbreviated, deals with rendering enemy groundbased air defence systems ineffective, either by jamming their sensors or by outright destroying them. This is usually performed by specially modified aircrafts (the EA-6B Prowler and EA-18G Growler of the US Navy and Marine Corps, as well as the German and Italian Air Force Tornado ECR being mentioned), carrying special sensors and weaponry. The report notes that, even when it comes to stealth aircraft, multirole fighters will remain vulnerable to enemy air defences, and while they can carry some SEAD-weaponry and sensors (such as radar-homing missiles and jamming pods), true SEAD will always be something of a niche-capability that even modern multi-role fighters can only perform “with some restrictions”.

A Rafale M of the French Navy’s Squadron 11F launches from the flight deck of the US aircraft carrier USS Carl Vinson (CVN 70). During strike operations in Iraq and Syria (this missions was a training flight, hence the lack of weapons). The M model has a strengthened airframe, larger tailhook, and a built-in boarding ladder, all of which would come in handy during road basing. Source: US Navy/Specialist 2nd Class John Philip Wagner, Jr

The possibility that Russia through the use of modern long-range air defence systems could more or less close Finnish air space is not discussed in the report. This would naturally have a huge impact on the needs and priorities of any future fighter, so not discussing it means that the work group believes that:

  1. A) The impact of long-range surface-to-air missiles will be small/manageable (at extreme ranges the system will have trouble engaging low-flying targets due to the radar not seeing over the horizon, and the large missiles needed to get enough range will have poor manoeuvrability against agile fighter-sized targets), or
  2. B) While it is possible to shut down most of Finland’s airspace using long-range surface-to-air missiles, it is not a good idea for Finnish officials to openly admit it.

The Alternative Solutions

A number of alternative solutions have been put forward, including unmanned platforms (UAV/UCAV), a completely ground-based solution (see earlier blog post), as well as extending the lifespan of the current Hornet-fleet.

All three of these are dealt with thoroughly in the report. There are currently no UAV/UCAV capable of performing the same missions as manned multi-role aircraft, especially with regards to air-to-air missions. Also, unmanned platforms tend to have the same cost to operate as manned aircraft of similar complexity and size (due to the fact that they need the same maintenance as an ordinary plane, and while he/she isn’t on board, they also need a trained “pilot”). The report envisions a place for UAV/UCAV’s in supplementing roles, e.g. reconnaissance, performing dangerous strikes, and finding targets on the battlefield and guiding in manned aircraft to strike these (FAC).

BAE Taranis is at the cutting edge of UCAV technology, but is still far from operational, and nowhere ear as versatile as modern multirole fighters. Source: BAE Systems

A ground-based air defence system lacks the operational flexibility of fighters, and cannot rapidly regroup to answer sudden threats in a new area of the country. Due to the vast size of Finland, a complete air defence system would also be extremely costly, and other weapon systems would be needed for striking enemy ground- and naval targets. Peacetime air surveillance is also impossible without own aircraft.

Lengthening the lifespan of the current Hornets is not a realistic option either. The aircrafts would need to be completely overhauled, an expensive process which easily could become even more expensive if some “nasty surprises”, such as cracks in critical structures, were found during the program. After 2020, Finland would also be the sole user responsible for keeping the legacy-Hornets aging mission computer up to date, carrying the whole upgrade cost for the fighter’s core avionics. The relative combat value of the aircraft, especially in air-to-air missions, is also rapidly decreasing with the introduction of new fighter aircraft in our neighbouring countries (F-35A, JAS 39E, T-50, and the latest versions of the Su-27 and MiG-29 families). If the extension would be done, it would cost approximately 1.2 billion Euros, and give the Hornet 5-10 years more in service. This would not give us any more options with regards to eventually replacing it, as no new designs are on the horizon in that timeframe, but rather it would diminish the options, as certain production lines are on the verge of closing.

The Candidates

The candidates have been an open secret, but as far as I am aware of, this is the first time they have been named in an official document. They are the Boeing F/A-18E/F Super Hornet, Dassault Rafale, Eurofighter Typhoon, Lockheed-Martin F-35, and the SAAB JAS 39E (Super) Gripen, while all Far Eastern aircrafts are out of the competition. I presented all of the contenders in depth last autumn (here and here), so here I will only look into the few notable changes that have taken place since, as well as their strong and weak points in the light of the report.

Prior to Paris Air Show this month, Boeing declared that they believe they will be able to keep their St Louis production line for the F/A-18E/F Super Hornet open until the end of the decade, meaning that they will be in the running for HX after all. Part of this is due to a new export deal for 28 Super Hornets to Kuwait, worth an estimated 3 billion USD. This marks only the second export deal for the Super Hornet, but Boeing is still looking into a number of potential foreign customers, Finland being one of them. An interesting ace the Super Hornet has is the ability to offer a dedicated SEAD version in the form of the EA-18G Growler, a heavily modified F/A-18F. The main problem is that the project is heavily reliant on continued interest (and funding) from a single operator. The day the US Navy decides to prioritise other aircraft, the few exported Super Hornets will become very expensive to maintain and upgrade.

A US Navy Boeing EA-18G Growler from Electronic Attack Squadron VAQ-141 “Shadowhawks” landing on the flight deck of the aircraft carrier USS George Washington (CVN-73). The aircraft is loaded with jamming pods for jamming enemy radars/air defences and external fuel tanks for longer range/loitering times. The standard F/A-18F Super Hornet is externally very similiar. Source: U.S. Navy/Specialist 3rd Class Ricardo R. Guzman

The interest in SEAD might prove beneficial to the F/A-18E/F, if Finland would opt for an arrangement similar to Australia, who operate a fleet of 24 F/A-18F Super Hornets and have 12 EA-18G Growlers on order. Operating dedicated SEAD aircraft would make Finland a highly sought after partner in international operations, with only a handful of countries being able to offer the same capability (Germany, Italy, and USA), of which only the USA are able to offer more than a handful of airframes. Boeing also has the benefit of being the main supplier for the current F/A-18 Hornet-fleet, which have been a highly successful project from a Finnish point of view. The report talks about “looking into the possibilities of benefitting from current strategic partnerships that exists between Finnish and foreign companies”, and letting Patria and Boeing continue with their collaboration from the Hornet on to the Super Hornet would seem to fit this bill perfectly. The Super Hornet is also developed for the harsh carrier environment, and could be used for dispersed basing (i.e. using purpose-built roads as airfields) in the same way as the current legacy-Hornets are used.

Dassault Rafale has also scored notable successes on the export market, in the form of a 6.3 billion Euro deal for 24 Rafales to Qatar and a similar number of aircraft to Egypt as part of larger arms package including weaponry and warships. The troublesome MRCA deal with India also seems to be moving ahead. All in all, it seems more likely now than it did half a year ago that Dassault could manage to keep the production lines of its beautiful fighter open long enough to take part in the HX-project. Still, it’s hard to say how serious Dassault is about the Finnish fighter program, seemingly being occupied in the Middle East and with the huge Indian deal. Rafale is available in both land-based and carrier versions.

Eurofighter, SAAB, and Lockheed-Martin have not been able to present much new. All programs are moving forward at a steady pace. Interestingly enough, all three were also present at this summer’s main flight show in Finland, Turku Airshow, held earlier this month. SAAB had a JAS 39C Gripen taking part in a flyby with a Finnish F/A-18C Hornet and a Royal Norwegian Air Force F-16AM, as well as performing a solo display. The other two didn’t bring any flying hardware. Neither Boeing nor Dassault took part in the air show in any way.

A Royal Air Force Typhoon takes off for Libya during the intervention of 2011 (Operation Ellamy). The aircraft carries four of the 1000 lb (450 kg) Enhanced Paveway II bombs, which can be guided via the centreline mounted Litening III targeting pod. ASRAAM short-range air-to-air missiles are carried for self-defence. Source: Sgt Pete Mobbs/MOD

Whit regards to the strategic partnerships, it should be noted that while Finland haven’t bought a British fighter since the Folland Gnat in 1958 or a German one since the Messerschmitt Bf 109G, the strategic partnerships are certainly there. The companies behind the Eurofighter consortium (officialy Eurofighter Jagdflugzeug GmbH) constitutes some of the key suppliers of the Finnish Defence Forces, through the CASA C-295 transports (by Airbus Defence) and the BAE Hawk trainers (by BAE Systems) of the Finnish Air Force, as well as in the form of the army’s primary transport helicopter, the NHIndustries NH90 (produced by the NHIndustries consortium, in which Airbus Helicopters has a 62.5 % stake). Patria is also supplying parts for a number of Airbus’ civil projects. All in all, the Eurofighter certainly has the local connections to be a serious contender. However, Eurofighter have had a hard time finding exports outside of the original countries, and I personally see the aircraft as the least likely choice for the HX-project. It’s not that it isn’t capable; it just costs too much and doesn’t quite stand out in an extremely competitive crowd.

SAAB seems to be the company that is placing most effort on the HX-project, although the Brazilian order certainly promises to be of an altogether different scale. Gripen is developed from the outset to suit Swedish needs, which are strikingly similar to Finland’s (cold weather operations, ease of maintenance, dispersed basing, and so forth). The Brazilian order and continued Swedish commitment also promises to make certain that the aircraft will have support throughout the lifecycle of the HX. The one stumbling block is its lack of stealth.

Contrary to SAAB, Lockheed-Martin does offer stealth, but there are huge questionmarks with regards to how maintenance of the F-35 will be handled. Cost is also an issue, even if the manufacturer assures everyone that the series produced aircraft will be on par or lower in unit price compared to current generation 4+-fighters. Still, when it comes to life-cycle costs, stealth coatings are notoriously difficult and expensive to maintain in proper working condition. The F-35 is offered in three versions, where the C-version is developed for carrierborne use, and as such could be used for dispersed basing. It is, however, noticeably more expensive than the landbased A-version, and it is questionable if it ever will receive any export orders. Of note is that the F-35 is only offered in single-seat versions, but the report acknowledges that much of the initial training will move to simulators, which lessens the demand for a two-seat lead-in training version.

Tour de Sky 2014 1080
Lockheed-Martin showing of a F-35 simulator to future fighter pilots at last years Tour de Sky airshow in Oulu. Source: Author

The Bottom Line

I would still rank the F-35A/C and the JAS 39E Gripen as the two most likely candidates, with the F/A-18E/F (possibly with a few Growlers on strength) as the black horse. What it will come down to is:

  • What impact can new stealth-cancelling technologies be assumed to offer?
  • How is the F-35 able to cope with demanding cold-weather operations in dispersed conditions?
  • How will a robust maintenance chain be assured (especially in the case of the F-35)?
  • Is dedicated SEAD capability of importance?
  • What will the life-cycle costs of the different aircraft be?