The HX-project Preliminary Report, pt. 2: Capabilities and Fighters

This is part two of my look into the preliminary report on the HX-project, which is aimed at finding a suitable replacement for the F/A-18C Hornet in Finnish service. This part will focus on the interesting stuff: the capabilities to be replaced, and the alternatives that might replace them.

The Capabilities

The capabilities the Hornet provides are, according to the report, as follows:

  • Airspace surveillance and control
  • Defensive counter-air (DCA)
  • Offensive counter-air (OCA)
  • Interdiction strikes
  • Battlefield air interdiction (BAI)
  • Maritime strike
  • Intelligence, surveillance, target acquisition, and reconnaissance (ISTAR)

Of note is here is that when the Hornets were introduced in Finnish service, it was as a pure interceptor/fighter aircraft, and only later (with MLU 2) did the potential for interdiction strikes start to feature prominently. In fact, it can be argued that out of the seven roles described above, the current Finnish Hornet-fleet is oriented towards three (airspace surveillance and control, DCA, and interdiction strike), is capable of handling two somewhat satisfactorily (BAI and ISTAR), with two being more or less outside of the current scope of capabilities (OCA and maritime strike). It is not that the Hornet can’t perform maritime strike and OCA-missions, but rather that a combination of lack of suitable weapons and a focusing in training on other missions leaves gaps to be filled (note: this is based on how air force training is described in open sources, it is possible that e.g. OCA receives more attention than is openly acknowledged).

20150606_155813
Scale model of JAS 39E Gripen as displayed by SAAB at Turku Airshow this spring. The weapons and sensors shown on the model would make the aircraft capable of all missions listed, and are, from the wingtip inwards: IRIS-T short-range air-to-air missile, Meteor long-range air-to-air missile, RBS15F long-range anti-ship missile (with secondary ground-attack capability), GBU-39 Small Diameter Bomb precision-guided glide bombs, and an electro-optical sensor/recce-pod. Source: Author

Of interest is especially the focus placed on OCA, which is discussed over multiple pages in the report from chapter 4 and onwards. The reasoning behind this is that air superiority can seldom be achieved through DCA only (i.e. shooting down enemy aircraft entering our air space), but instead this needs to be supplemented with OCA (attacking enemy aircrafts and airbases in their own territory). Traditionally, OCA has meant striking enemy airfields through the use of multiple supporting formations of aircraft (escorts, electronic warfare aircraft supressing enemy air defences, strike packages for taking out enemy runways and hangars, and finally an aircraft doing battle damage assessment by photographing the target after the strike), and as such these kinds of strikes are both high-risk and require specialised weapons and a high level of pilot competence. The number of aircraft involved would also mean that a significant proportion of the whole Finnish air force would be tied up in a single mission.

The increasing capabilities of modern multi-role fighters and the use of stand-off weapons and sensors mean that the absolute number of aircrafts used for an OCA strike can be decreased somewhat. However, I must still admit that I was surprised that this seems to be a prioritised field. It is possible that this is seen as the most demanding of the missions, and that if the air force pilots becomes proficient in multi-package strikes on enemy airbases, this skill set (and weaponry) can easily be used also for the “lesser” missions (such as striking strategic bridges or enemy surface units, neither mission of which is dealt with in any detail in the report).

Another mission that gets a thorough analysis is electronic warfare and especially suppression of enemy air defences. SEAD, as it is usually abbreviated, deals with rendering enemy groundbased air defence systems ineffective, either by jamming their sensors or by outright destroying them. This is usually performed by specially modified aircrafts (the EA-6B Prowler and EA-18G Growler of the US Navy and Marine Corps, as well as the German and Italian Air Force Tornado ECR being mentioned), carrying special sensors and weaponry. The report notes that, even when it comes to stealth aircraft, multirole fighters will remain vulnerable to enemy air defences, and while they can carry some SEAD-weaponry and sensors (such as radar-homing missiles and jamming pods), true SEAD will always be something of a niche-capability that even modern multi-role fighters can only perform “with some restrictions”.

A Rafale M of the French Navy’s Squadron 11F launches from the flight deck of the US aircraft carrier USS Carl Vinson (CVN 70). During strike operations in Iraq and Syria (this missions was a training flight, hence the lack of weapons). The M model has a strengthened airframe, larger tailhook, and a built-in boarding ladder, all of which would come in handy during road basing. Source: US Navy/Specialist 2nd Class John Philip Wagner, Jr

The possibility that Russia through the use of modern long-range air defence systems could more or less close Finnish air space is not discussed in the report. This would naturally have a huge impact on the needs and priorities of any future fighter, so not discussing it means that the work group believes that:

  1. A) The impact of long-range surface-to-air missiles will be small/manageable (at extreme ranges the system will have trouble engaging low-flying targets due to the radar not seeing over the horizon, and the large missiles needed to get enough range will have poor manoeuvrability against agile fighter-sized targets), or
  2. B) While it is possible to shut down most of Finland’s airspace using long-range surface-to-air missiles, it is not a good idea for Finnish officials to openly admit it.

The Alternative Solutions

A number of alternative solutions have been put forward, including unmanned platforms (UAV/UCAV), a completely ground-based solution (see earlier blog post), as well as extending the lifespan of the current Hornet-fleet.

All three of these are dealt with thoroughly in the report. There are currently no UAV/UCAV capable of performing the same missions as manned multi-role aircraft, especially with regards to air-to-air missions. Also, unmanned platforms tend to have the same cost to operate as manned aircraft of similar complexity and size (due to the fact that they need the same maintenance as an ordinary plane, and while he/she isn’t on board, they also need a trained “pilot”). The report envisions a place for UAV/UCAV’s in supplementing roles, e.g. reconnaissance, performing dangerous strikes, and finding targets on the battlefield and guiding in manned aircraft to strike these (FAC).

BAE Taranis is at the cutting edge of UCAV technology, but is still far from operational, and nowhere ear as versatile as modern multirole fighters. Source: BAE Systems

A ground-based air defence system lacks the operational flexibility of fighters, and cannot rapidly regroup to answer sudden threats in a new area of the country. Due to the vast size of Finland, a complete air defence system would also be extremely costly, and other weapon systems would be needed for striking enemy ground- and naval targets. Peacetime air surveillance is also impossible without own aircraft.

Lengthening the lifespan of the current Hornets is not a realistic option either. The aircrafts would need to be completely overhauled, an expensive process which easily could become even more expensive if some “nasty surprises”, such as cracks in critical structures, were found during the program. After 2020, Finland would also be the sole user responsible for keeping the legacy-Hornets aging mission computer up to date, carrying the whole upgrade cost for the fighter’s core avionics. The relative combat value of the aircraft, especially in air-to-air missions, is also rapidly decreasing with the introduction of new fighter aircraft in our neighbouring countries (F-35A, JAS 39E, T-50, and the latest versions of the Su-27 and MiG-29 families). If the extension would be done, it would cost approximately 1.2 billion Euros, and give the Hornet 5-10 years more in service. This would not give us any more options with regards to eventually replacing it, as no new designs are on the horizon in that timeframe, but rather it would diminish the options, as certain production lines are on the verge of closing.

The Candidates

The candidates have been an open secret, but as far as I am aware of, this is the first time they have been named in an official document. They are the Boeing F/A-18E/F Super Hornet, Dassault Rafale, Eurofighter Typhoon, Lockheed-Martin F-35, and the SAAB JAS 39E (Super) Gripen, while all Far Eastern aircrafts are out of the competition. I presented all of the contenders in depth last autumn (here and here), so here I will only look into the few notable changes that have taken place since, as well as their strong and weak points in the light of the report.

Prior to Paris Air Show this month, Boeing declared that they believe they will be able to keep their St Louis production line for the F/A-18E/F Super Hornet open until the end of the decade, meaning that they will be in the running for HX after all. Part of this is due to a new export deal for 28 Super Hornets to Kuwait, worth an estimated 3 billion USD. This marks only the second export deal for the Super Hornet, but Boeing is still looking into a number of potential foreign customers, Finland being one of them. An interesting ace the Super Hornet has is the ability to offer a dedicated SEAD version in the form of the EA-18G Growler, a heavily modified F/A-18F. The main problem is that the project is heavily reliant on continued interest (and funding) from a single operator. The day the US Navy decides to prioritise other aircraft, the few exported Super Hornets will become very expensive to maintain and upgrade.

A US Navy Boeing EA-18G Growler from Electronic Attack Squadron VAQ-141 “Shadowhawks” landing on the flight deck of the aircraft carrier USS George Washington (CVN-73). The aircraft is loaded with jamming pods for jamming enemy radars/air defences and external fuel tanks for longer range/loitering times. The standard F/A-18F Super Hornet is externally very similiar. Source: U.S. Navy/Specialist 3rd Class Ricardo R. Guzman

The interest in SEAD might prove beneficial to the F/A-18E/F, if Finland would opt for an arrangement similar to Australia, who operate a fleet of 24 F/A-18F Super Hornets and have 12 EA-18G Growlers on order. Operating dedicated SEAD aircraft would make Finland a highly sought after partner in international operations, with only a handful of countries being able to offer the same capability (Germany, Italy, and USA), of which only the USA are able to offer more than a handful of airframes. Boeing also has the benefit of being the main supplier for the current F/A-18 Hornet-fleet, which have been a highly successful project from a Finnish point of view. The report talks about “looking into the possibilities of benefitting from current strategic partnerships that exists between Finnish and foreign companies”, and letting Patria and Boeing continue with their collaboration from the Hornet on to the Super Hornet would seem to fit this bill perfectly. The Super Hornet is also developed for the harsh carrier environment, and could be used for dispersed basing (i.e. using purpose-built roads as airfields) in the same way as the current legacy-Hornets are used.

Dassault Rafale has also scored notable successes on the export market, in the form of a 6.3 billion Euro deal for 24 Rafales to Qatar and a similar number of aircraft to Egypt as part of larger arms package including weaponry and warships. The troublesome MRCA deal with India also seems to be moving ahead. All in all, it seems more likely now than it did half a year ago that Dassault could manage to keep the production lines of its beautiful fighter open long enough to take part in the HX-project. Still, it’s hard to say how serious Dassault is about the Finnish fighter program, seemingly being occupied in the Middle East and with the huge Indian deal. Rafale is available in both land-based and carrier versions.

Eurofighter, SAAB, and Lockheed-Martin have not been able to present much new. All programs are moving forward at a steady pace. Interestingly enough, all three were also present at this summer’s main flight show in Finland, Turku Airshow, held earlier this month. SAAB had a JAS 39C Gripen taking part in a flyby with a Finnish F/A-18C Hornet and a Royal Norwegian Air Force F-16AM, as well as performing a solo display. The other two didn’t bring any flying hardware. Neither Boeing nor Dassault took part in the air show in any way.

A Royal Air Force Typhoon takes off for Libya during the intervention of 2011 (Operation Ellamy). The aircraft carries four of the 1000 lb (450 kg) Enhanced Paveway II bombs, which can be guided via the centreline mounted Litening III targeting pod. ASRAAM short-range air-to-air missiles are carried for self-defence. Source: Sgt Pete Mobbs/MOD

Whit regards to the strategic partnerships, it should be noted that while Finland haven’t bought a British fighter since the Folland Gnat in 1958 or a German one since the Messerschmitt Bf 109G, the strategic partnerships are certainly there. The companies behind the Eurofighter consortium (officialy Eurofighter Jagdflugzeug GmbH) constitutes some of the key suppliers of the Finnish Defence Forces, through the CASA C-295 transports (by Airbus Defence) and the BAE Hawk trainers (by BAE Systems) of the Finnish Air Force, as well as in the form of the army’s primary transport helicopter, the NHIndustries NH90 (produced by the NHIndustries consortium, in which Airbus Helicopters has a 62.5 % stake). Patria is also supplying parts for a number of Airbus’ civil projects. All in all, the Eurofighter certainly has the local connections to be a serious contender. However, Eurofighter have had a hard time finding exports outside of the original countries, and I personally see the aircraft as the least likely choice for the HX-project. It’s not that it isn’t capable; it just costs too much and doesn’t quite stand out in an extremely competitive crowd.

SAAB seems to be the company that is placing most effort on the HX-project, although the Brazilian order certainly promises to be of an altogether different scale. Gripen is developed from the outset to suit Swedish needs, which are strikingly similar to Finland’s (cold weather operations, ease of maintenance, dispersed basing, and so forth). The Brazilian order and continued Swedish commitment also promises to make certain that the aircraft will have support throughout the lifecycle of the HX. The one stumbling block is its lack of stealth.

Contrary to SAAB, Lockheed-Martin does offer stealth, but there are huge questionmarks with regards to how maintenance of the F-35 will be handled. Cost is also an issue, even if the manufacturer assures everyone that the series produced aircraft will be on par or lower in unit price compared to current generation 4+-fighters. Still, when it comes to life-cycle costs, stealth coatings are notoriously difficult and expensive to maintain in proper working condition. The F-35 is offered in three versions, where the C-version is developed for carrierborne use, and as such could be used for dispersed basing. It is, however, noticeably more expensive than the landbased A-version, and it is questionable if it ever will receive any export orders. Of note is that the F-35 is only offered in single-seat versions, but the report acknowledges that much of the initial training will move to simulators, which lessens the demand for a two-seat lead-in training version.

Tour de Sky 2014 1080
Lockheed-Martin showing of a F-35 simulator to future fighter pilots at last years Tour de Sky airshow in Oulu. Source: Author

The Bottom Line

I would still rank the F-35A/C and the JAS 39E Gripen as the two most likely candidates, with the F/A-18E/F (possibly with a few Growlers on strength) as the black horse. What it will come down to is:

  • What impact can new stealth-cancelling technologies be assumed to offer?
  • How is the F-35 able to cope with demanding cold-weather operations in dispersed conditions?
  • How will a robust maintenance chain be assured (especially in the case of the F-35)?
  • Is dedicated SEAD capability of importance?
  • What will the life-cycle costs of the different aircraft be?

9 thoughts on “The HX-project Preliminary Report, pt. 2: Capabilities and Fighters

  1. Puskaryssä

    My Bet is:
    If it has one engine >> JAS 39E Gripen.
    If it has two engines >> F/A-18E/F (possibly with a few Growlers on strength).

      1. Kristian

        Will the allure really stretch all the way to include the eight times higher running costs of F-35 over JAS?

  2. JP

    Eight times higher running cost? I have to disagree especially since we don’t know how much Gripen E costs to buy and maintain.

    1. Comparing life-cycle costs are a complex issue at best, which is why I usually don’t make direct comparisons (unless some official and/or thrustworthy source clearly gives the maths behind them). Of note is that Finland will create and use its own formula for calculating the LCC.

  3. EP

    Originally I was surprised that Eurofighter was chosen as a candidate, but the more I think about it I see it as an actual contender.

    Pro:
    1. Two-engine fighter, if that still is a factor for FAF.
    2. Easy to arrange local assembly and maintenance. This is a particularly problematic issue for F-35, which relies heavily on regionally distributed maintenance system which means heavy dependance on other countries.
    3. Austere airfield capability, again a problem only for F-35.
    4. Best performance envelope (ceiling, time-to-station, supersonic manoeuvrability, acceleration, supercruise) and platform capability (Meteor, two-way datalink, large radar & IRST, CAP range, payload) for air superiority/interdiction.
    5. Probably the best growth potential outside of F-35, due to available engine power, large radar & airframe and modular architecture (Due to the fact that the partner countries couldn’t agree on pretty much anything, Eurofighter is very modular in nature with every country operating a different feature set. Pretty much everything is a pluggable, line replaceable unit)
    6. Although still lacking in A2G capability, improvements are already funded and it has an attractive weapon set for CAS & interdiction role (Brimstone 2, SPEAR 3) As Typhoon is retired, the partner nations are relying on Eurofighter to fill the role and will likely fund the necessary weapons integrations.
    7. UK is committed to developing the Eurofighter in a role similar to what FAF needs. Germany also seems to have renewed interest in maintaining their military capability, and they aren’t buying the F-35.

    Con:
    1. Even though the platform has growth capability, development and funding has been lagging due to lack of commitment by partner nations.
    2. Hasn’t had much export success lately, although the Kuwait deal might create more interest globally.
    3. ESM capabilities seem to be lagging behind Gripen and Rafale, and of course F-35, but it’s very hard to accurately gauge this as all ESM functionality is highly confidential.
    4. No stealth, but neither has any other platform besides F-35.
    5.

    Gripped is a very nice plane, but it’s limited by it’s small airframe in weapons delivery and growth potential. Rafale is also a great fighter, but a single developer (France) means that future capability is developed at their discretion, weapons costs are also an issue with Rafale. Super Hornet is attractive due to existing familiarity with Hornets, but it’s future is questionable as US Navy only intends to operate it until 2030+. With the F.35 it comes down to stealth and how much importance the FAF gives to it, in most other factors it is not as capable, especially in air superiority role, as the other contenders.

    1. The Eurofighter is a beast, and is one of the greatest multirole aircrafts currently around (at least if all capabilities were to be ”unlocked” by the user countries). However, the operating costs seem to be extremely high, which isn’t surprising giving its twin engine nature and heavy weight. The F-15E and derivatives comes to mind, no one questions its abilities, but few can afford to pay for them.

      Today engine failures are extremely rare, e.g. Sweden has operated its Gripens for years without any accidents caused by engine failures. The true value of having two engines comes in combat, when a twin-engine fighter can take more damage, and still be able to return to base. I am worried that if we go down the Eurofighter-path, we won’t have any money left to actually fly them.

      //Frisk

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s