Finnish Land Ceptor – MBDA Aiming High in ITSUKO

After half a decade of talking fighters under the auspice of the HX-programme, much has already been said. Which meant that ironically enough, the most interesting piece of kit at the Kaivari 21 air show wasn’t anything flying, but a green Volvo truck. Meet the Finnish Land Ceptor.

The TEL of the Finnish Land Ceptor in a firing position by the sea at Kaivari 21 with standard-length CAMM missiles. Picture courtesy of MBDA / Paavo Pykäläinen

MBDA was shortlisted in the high-altitude effort of ITSUKO last year, a designation which I believe comes from Ilmatorjunnan suorituskyvyn kehittämisohjelma (literally “the development programme for the capabilities of the ground-based air defences). At the time I wrote that I felt they would have a hard time in face of the competition. However, there certainly is no lack of trying, and the company was eager to come to Helsinki to demonstrate the tricks that could set their offering apart from the competition.

The system shown at the air show was designated the Finnish Land Ceptor, and while based on the British (and to a lesser extent the Italian) Land Ceptor system, the Finnish offering is customised our particular needs by sporting a combination of:

  • Volvo FMX 8×8, a rather popular heavy-duty truck in Finland,
  • Saab Giraffe 4A, which in its navalised form won the contract for the main radar of the Pohjanmaa-class (SQ2020), and
  • CAMM/CAMM-ER family of missiles, in operational service with a number of countries both on land and afloat.

Those familiar with FDF acquisitions will spot the pattern: some of the best yet still  mature systems in their own field. This is usually a popular formula when you knock on the door to the FDF Logistics Command, so let’s go through things step by step, before we look at why the offer could be a stronger contender than I originally anticipated.

A Volvo FMX 8×8 in its natural environment, moving gravel somewhere in Europe (in this case, Minsk). Source: Wikimedia Commons / Homoatrox

The Volvo FMX series of trucks was launched just over a decade ago with an eye to heavy-duty earthmoving, a field that earlier had seen the use of a combination of different variants of the baseline FM- and FH-series of vehicles. The FMX sports generally more rugged equipment, including a serious tow point up front, a proper skid plate, as well as steering and gear box optimised for the task (people might remember the viral commercial in which Charlie the hamster drew a truck up from a Spanish quarry). In the eleven years since its introduction, around 1,000 FMX have been sold in Finland, which is no mean feat for a niche vehicle considering that the total number of newly registered trucks above 16 tons (gross weight) has been hovering between 2,000 to 3,000 vehicles annually in Finland during that time. With the vehicle being so common, it’s no surprise that the spares are relatively easy to come by, and finding a Finnish mechanic who knows the model is relatively easy compared to e.g. for the MAN HX-77 used by the British to transport their systems. It might also be worth noting that Volvo Trucks isn’t owned by the Chinese, as is the case with Volvo Cars. MBDA also notes that truck could be any model capable of carrying the 15-ton missile pallet, and that they are happy to change it out if FDF would prefer some other platform. However, FMX certainly looks like a solid choice, and unless there’s logistical reasons for something else I don’t expect them to do so.

The Giraffe 4A is an S-band radar that combine the functions of acquisition/surveillance-radars as well as fire control-radars into a single system. It builds upon Saab’s experience with the earlier Giraffe AMB and ARTHUR (MAMBA in British service) counter-artillery radar, to have a single AESA-based radar that can support the whole battery. As noted, it is the key sensor of the Finnish Navy’s upcoming corvettes, where it will be paired with the ESSM-missiles to provide air defence. The radar is also on order to the Swedish Defence Forces as part of their integrated air defence system. The basic specifications of the Giraffe 4A – the fact that it’s a GaN-based AESA system – means that it is able to track a significant number of targets effectively and also follow small and difficult to see ones, such as UAS, cruise missiles, artillery projectiles, as well as being able to handle detection and tracking of jammer strobes. And yes, since it operates in S-band and many flying stealth aircraft are optimised for the X-band, it will have an easier time detecting them at longer ranges than if it was a classic X-band radar. However, any such statement is bound to include a number of caveats and quickly degenerate into a mud fight. Will it spot stealth aircraft? Any radar does, as long as the target is close enough. Will it do so at a useful range? That depends on how stealthy your target is from that particular angle. Still, the Giraffe 4A is about as good as they come in this day and age, and while MBDA is happy to change out the radar if the FDF wants something else, I wouldn’t be surprised if it is in fact their first choice (a number of older Giraffes are also in FDF service, most notably the Giraffe 100 AAA as the LÄVA movable short-range air-surveillance system, though their relationship to the Giraffe 4A is rather distant).

The layout of the TEL has the missiles to the very rear with the flat rack missile tubes and the hook-system used to change them, two sets of jacks (front and rear), and the front unit which include both the electronics, onboard power supply, and masts. The FMX-based TEL is a standard road-legal truck according to Finnish regulations, and does not require any special permits besides the standard C-rating on the part of the driver (though you might need an ADR-certificate to drive live missiles, I’ve never had to check up that one so I honestly don’t know). Source: Own picture

The big deal here is the CAMM family of missiles, and in particular the big brother CAMM-ER. The CAMM does share a number of components with the ASRAAM air-to-air missile, though it would be wrong to see it as a ground-launched version of the latter. The missile is designed from the beginning as a dedicated ground-based air defence one, and as such MBAD is really pushing the fact that the optimisation work in the design phase has done wonders.

To begin with, the missile is soft-launched. In other words, instead of the rocket engine just firing and powering the missile into the air, a gas generator causes the missile to pop out of the VLS-tube. Or rather, it doesn’t just pop out, it flings it 20 meters up into air above the launch canister. There thrusters fire to point the missile in the right direction, and only after that does the main rocket fire. The test firings from HMS Argyll of the naval Sea Ceptor-version of the CAMM shows the principle rather well.

Now, why go through all that mess when it is easier to just light the rocket and off you go? There are a number of benefits. To begin with, the stress on the launcher is significantly lower, as there is no blast of fire and hot gases inside the small compartment of the launch tube. Not having to fireproof stuff means cheaper launcher. However, there’s also the benefit that since the missile hasn’t warmed up everything, there is no lingering heat signature from a missile launch, which makes it easier to keep your firing unit hidden. Hiding the launcher with nets and similar is also easier, since you don’t have to worry about them catching fire.

Another positive is the use of a VLS without wasting energy and time to course correct. In theory, a traditional missile will be faster on the target since it starts accelerating immediately. However, that require the launcher being pointed roughly in the right direction. For VLS systems, such as the very popular Mk 41 found aboard most western-built frigates and destroyers, the missile will actually waste a bunch of time accelerating out of the tube straight upwards, and then it has to trade energy to be able to turn toward its target on a less than optimal course. Everything in life is trade-offs and compromises, so which system is the most beneficial depends on your scenario, but the cold-launch means that by the time your rocket kicks off, the missile is already roughly pointing where it’s supposed to go. MBDA is claiming that in total this saves a whooping 30% in nominal launch weight compared to having the missile accelerate out from the tube (I would have to get a rocket scientist to check their maths before I’m ready to confirm that number), which in the case of the CAMM-family directly translates into an added usable energy which allow it to manoeuvre effectively at long-ranges or, crucially, at high altitudes. The profile of the weapons are such that the effective high-altitude performance is a priority, and MBDA describe the principle as the difference between a fence and a bubble. How big an area the fence covers and how high it goes are obviously classified data, but the official figures given is that at 45 km for the CAMM-ER and 25 km for the CAMM-sans suffix there is still usable energy for a high probability of kill, with the max ranges being further still.

A feature that definitely falls in the “Cool”-category is that the soft-launch can take place from inside a building provided that there’s a hole in the roof and the roof is less than 20 meters above the top of the launch tubes. A more serious benefit is that it allows firing positions in forested or urban terrain to be used (again, provided the location meets the the 20 meter + launcher height limit), and the ability to fire in all directions gives added flexibility to the system as well.

A Norwegian NASAMS-launcher of roughly the same standard currently in Finnish use as the ITO 12 showing the hot-launch principle of the AMRAAM-missile. Source: Norwegian Armed Forces / Martin Mellquist

For anybody wondering about the current situation, the NASAMS II-system in use by the FDF sports angled hot-launch cells, meaning that there will be a rocket firing inside a box and the missile will leave the launch cell under its own power headed towards wherever the launcher is pointed. As such, you don’t want to put up your NASAMS-launcher in a small clearing in the middle of the forest.

The basic firing battery for the Finnish Land Ceptor consists of six TELs running around with eight missiles each, a tactical operations center (TOC), and the aforementioned radar which function as the units main organic sensor. In addition there is obviously a number of supporting vehicles such as those carrying reloads and personal equipment for the battery personnel. The TOC is the brains of the unit, and functions as the command and communications node. Here targets are identified and engagement decisions made, with firing units being chosen and launches ordered. The whole system can be fed targeting data via the datalink from any number of sources as long as the location data quality is up to par. This include the organic radar of the battery, but also those of neighbouring batteries, other radars, ships, aircraft, and so forth. This can come either directly to the TEL or, preferably, through the TOC. The TELs are the aforementioned FMX trucks with the complete firing unit as a single palletized unit. They lack their own radars, but can be fitted with an optional electro-optical sensors in a mast which allows for independent passive targeting at ranges of up to approximately 20 km. As such, the TELs are able to operate independently to a certain extent, relying on the datalink and/or own sensor to get targeting data. Crucially, MBDA has already demonstrated their ability to successfully integrate TOCs and TELs with Insta’s C2-network.

The characteristic twin masts of the TEL, with the larger one housing the datalink antenna and the smaller one being the optional E/O-sensor which allow for independent targeting if the radar and datalink are down. Source: Own picture

In practice, the TELs would drive to a given firing location, where the truck would park, lower the jacks, raise the missiles and masts, and the crew would push a few ‘On’-buttons and start connecting cables. The whole thing would be ready to fire within ten minutes, but a more realistic time for a fully integrated IADS-position is in the ten to twenty minutes range. A two-person crew could handle the whole system, but to ensure 24-hour continuous operations a squad of eight is the standard. The complete missile unit is palletized, and in case a position is expected to be static for a longer time the jacks can be heightened to allow the truck to drive away, after which it is lowered to lay flat on the ground a’la NASAMS. This allows for a smaller footprint and is more easily camouflaged compared to the full vehicle. In a static position (something the British Land Ceptors will employ on the Falklands) it is also possible to start pulling power and communications cables between a fortified TOC and the firing units, though in case of a more fluid scenario where one wants to stay mobile the missile unit has its own onboard power unit in the form of a diesel generator and can take care of the communications via the datalink mast mentioned earlier. This flexibility to allow the same system to be either in full shoot-and-scoot mode or as a fortified solution (as mentioned, you could in fact fortify the launcher as well thanks to it being cold-launched) is quite something.

Reloading take a handful of minutes and the whole missile set can be changed out via a flat-rack and cargo hook system. Alternatively, individual launch tubes can be switched out with a crane. The tubes are both the storage and launch containers, meaning the munitions are next to maintenance free. Once the fire command is given, the frangible top-cover is simply torn apart by the missile heading upwards. Any single TEL can quickly change between CAMM and CAMM-ER simply by switching out the flat racks, with the CAMM-ER being identified by its longer tube. Both missiles sport a new active radar-seeker with a low-RCS capability, meaning that they are able to operate in fire-and-forget mode once they’ve left the TEL.

It’s hard to shake the feeling that MBDA is onto something here. While they decline to discuss the specific FDF requirements and projects in much detail – the official line is that that is something best left to the customer – it is rather obvious that the CAMM-ER would give the FDF the wanted high-altitude capability for a ground-based system, while the baseline CAMM would seem to fit the area coverage-requirement rather well. The modularity, mobility, and ability to integrate into current networks are also obviously a big deal. And it is hard to not notice just how well the combination of systems seem to fit the FDF’s Goldilock’s approach of proven but yet cutting edge. With the UK and Italy both having acquired the Land Ceptor-system, it certainly is far from a paper product. This is also something that MBDA like to point out, the benefit of sharing a common system with such a strategic partner as the British Army. The UK might not be first in line when Finland is discussing strategic partners in the defence sector, but it is certainly coming just behind the front-runners thanks to initiatives such as JEF. An interesting aspect is also the possibility of MBAD cooperating with Finnish industry on the Land Ceptor as part of an indirect industrial cooperation package in case some of the eurocanards would win HX (ground- and air-based air defences are obviously all part of the same attempt at increasing FDF’s overall air defence capabilities). Already now, Finnish industry has reportedly been involved in the development of the Land Ceptor proposal. MBDA is also happy to declare that it truly would be a Finnish system, with full sovereign capability and freedom of use, as well as local maintenance. “We give you the keys, and you use it”, as it was explained during our discussions.

But the competition is though, and MBDA has had a surprisingly hard time landing a large Finnish order. Part of this likely comes down to price where the shorter production runs typical of European systems compared to US ones have been an issue. This time they are up against not only the Israelis which have beaten the more traditional suppliers to FDF twice in recent acquisitions, but also Kongsberg with a developed version of the NASAMS which would bring significant synergies to the table. However, might the NASAMS-ER be too much of a case of putting all the eggs in the same basket – especially if we see an AMRAAM-equipped fighter taking home HX? When I ask him about the though competition they face, Jim Price, MBDA Vice President Europe, is confident.

We’re always in though competitions. [But] we have a unique military capability.

You can indeed come a long way with that when dealing with the FDF, and it certainly sounds like a combined force of NASAMS and Land Ceptor batteries each playing to their respective strengths could provide a well-balanced mix to support the Air Force and the FDF as a whole in their quest for air superiority. According to the latest info, we will get to know if the FDF agrees sometime during 2022.

Oh, and you really didn’t think I could write the whole post without embedding The Hamster Stunt, did you?

Finland goes GBAD-shopping

In a long-awaited move, the Finnish Defence Forces Logistics Command yesterday sent out the RFQ for a new ground-based air defence system “with a high ceiling”. The corresponding RFI went out in 2018, and under the current schedule the procurement will be finalised before the end of 2022 and the system will become operational during the latter half of the 20’s.

For a more general overview of the current state of the Finnish high-end ground based air defences (and why we won’t acquire an anti-ballistic missile capability), I recommend that you check out my sub-chapter on Finland in the FOI anthology “Beyond Bursting Bubbles“, but the long story short is that Finland acquired the Buk-M1 in the late 1990’s as part of a deal to cover the Russian debt stemming from the Soviet clearing accounts. Unfortunately, worries about the ability of Russia to counter the system meant that they had to be retired quite soon thereafter, with the last conscripts training on the system in 2005. Exactly when (if?) the system was withdrawn is unclear, but it seems to have survived in (limited?) service past Crimea.

In any case, a replacement system was acquired under what would become the ITO12 procurement, which saw SAMP/T and NASAMS II face off in a competition won by the NASAMS. The reason behind the choice was bluntly described by then Chief of Defence, Admiral Kaskeala:

Do we buy one Cadillac or four Volvos?

In any case, the ‘Volvo’ has scored a number of successes around the world, and is generally seen as a potent system, but one that suffers from short range due to the poor performance of its AIM-120C AMRAAM missile when fired from a ground-based launcher. Janes lists it as having an estimated max range of 20 km, though this is partially offset by the launchers being able to be placed up to 25 km out from the fire direction centre (FDC). The ceiling is rather uncertain, with The Drive mentioning 50,000 feet (15,000+ meters), but on the other hand then-Finnish inspector of the ground-based air defences, colonel Sami-Antti Takamaa, in an interview in 2018 stated that the new system (which should be able to go significantly higher than NASAMS) should have a ceiling of 8,000 to 15,000 meters. There’s likely an apples-to-pears situation in the numbers above, with Takamaa referencing the effective engagement altitudes which are quite a bit below the theoretical maximum.

However, for most situations the maximum specifications isn’t as interesting as other factors. The ability to deploy the systems with the launchers dispersed, the active seeker of the missiles, modularity, and the modern C4I architecture are of greater value. However, the fact that the NASAMS would lose in top trumps against the system it replaced means that there is a gap above the coverage provided by Finnish SAMs, and one that can only be covered by fighters.

The Finnish air defence doctrine places a high emphasise on the joint aspect, with the ground- and sea-based systems supporting the fighters of the Finnish Air Force. Here a NASAMS II battery is deployed in Lohtaja during the Air Forces’ main exercise Ruska 20 earlier this fall. Source: Finnish Air Force FB/Joni Malkamäki

This leads us to the current ITSUKO-program, where throughout the focus has been on increasing the air defence capabilities at high altitude. This is interesting, as most countries discuss their different classes of SAM’s in terms of range rather than ceiling, and clearly shows which operational problem the FDF is trying to solve. Obviously, with increased ceiling comes increased range (though one shouldn’t think of the effective engagement zone as a half-sphere above ground, as the routes chosen by modern missiles and the physics involved makes things a bit more complex than that), but this is largely seen as a secondary bonus. In the earlier quoted article, major general (engineering) Kari Renko of the Finnish Defence Forces Logistics Command explained that “Increased territorial coverage means that we have more batteries operational”, and struck down the notion that a meaningful increase in territorial coverage could be achieved solely by increasing the range. In effect, this is due to the large area of Finland, which means that the difference in coverage between differently ranged systems, especially at low range, is small enough that it is negligible at the operational or strategic level.

Here it is good to remember that as none of the current systems are to be replaced, the number of operational batteries will in fact go up. This in turn means that, in the words of current inspector of the ground-based air defences, colonel Mikko Mäntynen, the “fighters will get a higher degree of freedom”. While this is all good and true, there is a nagging feeling that this might be an attempt to cover for the fact that HX won’t reach 64 fighters. Let’s hope that feeling is unfounded…

The news yesterday was that the field competing has been cut down by half. Of the ten companies that received the RFI in 2018, five are still in the competition bidding for the role as prime contractors. These are Kongsberg Defence and Aerospace (KDA), Diehl Defence, MBDA, Rafael, and IAI. Missing from the list are all American companies, as well as Swedish defence company Saab whose RBS 23 lacks the punch to compete in this race (note though that Janes gives the max altitude as 15,000 meters, again showing that 15,000 meters max doesn’t necessarily mean that your system can effectively handle engagements at 8,000 to 15,000 meters). However, it is entirely possible that Saab appears as a subcontractor in some of the bids, as their Giraffe 4A radar has had a tendency to do so in other places. Raytheon is a long-term active partner to KDA, and it is no surprise that they are confirmed to be working together with them here as well (even if rumours had hinted at them also bidding separately as a prime, presumably with the MIM-104 Patriot). Another of Raytheon’s joint programs might also show up…

Of those bidding, Diehl is without doubt the odd one out. As far as I am aware of, Diehl has nothing bigger than the IRIS-T SLS (which recently entered Swedish service as the RBS 98). Being based on a short-range IIR air-to-air missile, it suffers from a 5,000 meter ceiling (again according to Janes), leaving it even shorter-legged than the NASAMS. To be completely honest, I have no idea about what Diehl is planning to offer.

Edit 30 October: Diehl in fact has a longer-ranged version. There is quite a bit of confusion in their designations in open sources (I’ve e.g. seen SL, SLS, and SLM all refer to just different launchers firing the same IRIS-T missile, and I’ve even seen the Swedish EldE 98 referred to as SLM!). However, Diehl’s SLM is in fact a rather different missile with a seriously longer range thanks to a larger rocket and an aerodynamic nosecone that pops off once the target is within range of the missile’s IIR-seeker. This dual-mode (firing solution and early tracking being provided by radar and datalink until switching to final guidance by IIR) is rather interesting and could potentially be more difficult to spoof compared to more traditional solutions. The missile has been test-fired successfully, but the operational status seems to be rather uncertain. Thanks to f-pole for clearing things up!

KDA is the obvious favourite, being able to offer the AMRAAM-ER for the NASAMS-system. The AMRAAM-ER in essence combine booster of the ESSM and the front unit of the AMRAAM to produce a completely new missile with “50% increase in range and a 70% increase in altitude” compared to the current AIM-120C-7.

In other words, KDA can simply offer more of a system already in service with the Finnish Army, but with ability to use either the shorter-legged AMRAAM or the longer-legged AMRAAM-ER according to need. The modularity of the NASAMS also means that integrating a host of other missiles is possible, should the FDF be so inclined (spoiler alert: they’re probably not). That kind of synergy effects could very well be hard to beat, but the competition isn’t giving up without a fight.

Land Ceptor during test fires in Sweden in 2018. The time lapse shows the cold launch sequence in which the missile is flung upwards and only then actually firing. Source: Crown copyright

As noted earlier on the blog, MBDA has had a surprisingly difficult time in landing any major contract with the FDF. The obvious system for them to offer is the Land Ceptor/CAMM-ER. The missile is an operational system with the British Army and the specifications on paper seems to be a good match, but it is difficult to see it outmatching the stiff competition.

The question about what the two Israeli companies will offer is more open. Rafael is able to offer the SPYDER, which is a truck running around with a bunch of missiles on its back. It offers the ability to fire both the Python 5 highly-manoeuvrable short-range IIR-missile, but also the Derby longer-ranged missile. The overall concept is rather similar to that of the NASAMS, with a modern C4I architecture and air-to-air missiles adopted for ground-based use, and while not as prolific as the NASAMS it has scored a few export successes from serious customers such as Singapore. However, most numbers found in open sources seem to indicate that the SPYDER lacks the range and ceiling to be able to offer a meaningful improvement over the current NASAMS. This would in turn mean that the system offered is the David’s Sling, which uses a two-stage Stunner-missile (also known as the SkyCeptor). The missile is perhaps best known internationally as the PAAC-4 missile for the US Patriot-system, which is a joint program between Rafael and Raytheon to produce a significantly cheaper missile with better performance compared to the current PAC-3 that is used for anti-ballistic missile work with the Patriot battery. The Stunner is designed from the outset to be able to easily integrate into other systems, meaning that it is possible that the weapon could communicate better than some of the competition with the current systems found in the Finnish integrated air defence network. Still, it does feel that the ABM-capable is a bit of overkill in a competition against missiles such AMRAAM-ER and CAMM-ER (remember that several high-ranking officials and generals at different times have shot down the idea that Finland would be interesting in pursuing a real ABM-capability), unless the offer really is one we can’t refuse.

One of the final test firings of the David’s Sling before the system entered operational use with the IDF. Note the asymmetric nose. Source: United States Missile Defense Agency via Wikimedia Commons

IAI has a more varied, and at least on paper, more suitable range of weapons, with the BARAK-series being the logical contender. This include a range of missiles, with the BARAK-LRAD missile being the most likely version on offer here. This is part of the general BARAK MX-system, and is developed in parallel with the BARAK 8 for the Indian Navy. Crucially, IAI’s Elta-division has a large portfolio of radars (including the ELM-2311 C-MMR which was recently acquired by the FDF for use as a counter-battery radar), and as such it would be interesting to see which radars they would pair with their interceptor for the bid.

ESSM for the Pohjanmaa-class

Yesterday the Finnish MoD announced that the RIM-162 Evolved SeaSparrow Missile (ESSM) has been chosen as the main air defence weapon for the upcoming Pohjanmaa-class corvettes.

The weapon systems already acquired for the Pohjanmaa-class include Torped 47 ASW-torpedoes (Sweden), Gabriel anti-ship missiles (Israel), and ESSM surface-to-air missiles (USA). Source: Finnish MoD

The DSCA cleared the ESSM for export already a year ago, and crucially this was for the quad-packed Mk 25 launcher. This is fitted into the Mk 41 VLS launch system, which is a module of eight box-shaped shafts in which the missiles are stored until launch. The Pohjanmaa-class will be the smallest operational vessel fitted with the system by some margin (Taiwanese test bed LCC-1 Kao Hsiung is roughly same size), and interestingly enough it seems the full strike-length cells will be fitted.

This will give the corvettes a total of 32 ESSM per vessel (the astute observer will notice that the DSCA request only cover 68 missiles, meaning that further orders are to be expected), a significant upgrade in both range and numbers compared to the Hamina-class. While the Hamina’s Umkhonto have an IR-seeker, the ESSM have a passive radar seeker, which gives better performance in bad weather. When it comes to active versus passive radar seekers, unlike the situation in air-to-air combat where requiring the launching platform to keep it’s radar on target conflicts with the need to evade incoming fire, on a surface ship it isn’t necessarily as much of a problem as the radar stays active in a 360° search sector throughout the engagement.

Range is another major factor. The increase in range from 12 to 50 km gives a 17 times greater theoretical area covered. It has also been announced that the vessels, both as sensors and as shooters, will be integrated as part of the joint air defence network of the Finnish Defence Forces. This will give a significant boost to the air defences around the southern coastline, a key area for the country due to its concentration of population centres, ports, and heavy industry. This would be of particular importance in the early stages of a conflict, where the ground based systems of the Army might not have had time to deploy in the field.

The Mk 41 also allows for significantly larger missiles to be used, including the Standard-family of the US Navy and land-attack weapons such as the TLAM. However, with only eight available cells per corvette, swapping out a quad-pack of ESSM for a single longer-ranged SAM has serious effects on the ability of the vessel to fend off prolonged attacks. The Mk 41 could be used as a platform for missile defences to target systems such as the Iskander. E.g. Denmark is planning on doing this, but this would effectively tie up our limited number of corvettes in point defence missions along the southern shore.

An important factor in the choice was likely the widespread use of the Mk 41 and ESSM-combination, which ensure the ability to quickly fill up stocks if the need arises (i.e. we can hopefully get more missiles from US or even Norwegian stocks if we get dragged into a war).

The choice of ESSM will also have indirect effects on the Army’s GBAD program for a medium-range SAM-system. The inability of MBDA to secure a naval CAMM-order from Finland will likely impact the chances for the same missile on land as well. The NASAMS-compatible AMRAAM-ER in turn got a further boost, as it share some parts commonality with the ESSM (the ESSM can also be fired from the NASAMS launcher, though it is dubious if the Army wants a passive seeker head). Overall, MBDA has had a surprisingly hard time in securing any kind of orders in Finland. Time will tell if HX changes this.

On a final note, it is nice to finally see the MoD and Navy fully switch to referring to the vessels as the Pohjanmaa-class. The name has been known for quite some time, and in building a connection between the general public and the project it certainly has a nicer ring to it than the formal Squadron 2020.