The Art of Dissuasion

When the French ambassador to Finland, Mrs. Cukierman, starts to talk about nuclear weapons in what ostensibly is a sales pitch for the Dassault Rafale as Finland’s next fighter, and is followed up by a company representative also getting into the fact that Rafale is nuclear-capable, you would be forgiven to think that someone from a competing eurocanard-maker has sabotaged their talking points. Finland and France both being longtime members of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). However, we are in fact again seeing something I have brought up numerous times on the blog: Rafale is something of an outlier when it comes to the HX-competition, both when it comes to the bid itself but also when it comes to marketing.

And once you accept that and get over the first shock of (figuratively) encountering the Air-Sol Moyenne Portée-Amélioré in Kaivopuisto – there turn out to be some good arguments in the French message this time as well.

The Rafale solo during the Kaivari 21 air show showing the stunning new special livery celebrating the space domain as well as the more traditional ones. Source: Own picture

Books have been written on France and its nuclear weapons, but in short France has a countervalue strategy, i.e. they will hurt you so much that it isn’t worth it. This did include the French curiosity of a ‘pre-strategic’ strike with an air-launched weapon taking place when vital French interest were threatened as a final warning to the enemy to stand down or face the full wrath of the French nuclear arsenal, but it is a subject of some debate whether this is still the plan. Still, even today the French place a high value on the airborne component of their nuclear weapons and have refused any political attempts at going SSBN-only like their British counterparts (also note that what is clear is that while the French see a use for low-yield weapons, these are not tactical weapons in French doctrine but simply smaller strategic ones). The point is, France places an extremely high importance on its independent nuclear deterrent, the Force de dissuasion, and for it to work as a deterrent everyone – friend and foe alike – needs to be absolutely sure that if the President gives the order, the result really will be fire and brimstone on the intended target. And the Rafale is chosen to be the bringer of that destruction.

In other words, it is a French vital strategic interest that the Rafale is reliable enough that it is mission ready 24-7-365. Cancelling a QRA scramble because of maintenance issues is embarrassing, cancelling a nuclear strike can mean the destruction of your country. Paris trust the Rafale to be ready if the call ever was to come, and practices the complete mission several times a year under the codename “Poker”. That is something else compared to promises of certain levels of availability by 2025.

The second point is equally important, and that is that the French trust the fighter to get through to its target regardless of when and where it sits. Granted the ASMP-A gives a certain matter of stand-off range (likely in the range of 300-500 km), but as you don’t get to chose your countervalue targets (rather, they can be expected to be found deep behind enemy lines and be rather well-defended) it doesn’t matter whether there is a so called ‘A2/AD-bubble’ in your way – you need to be able to punch through it. And here as well, Paris is confident that the Rafale can fight its way through anything thrown in its way. The SCAF and ASN4G may be on the horizon, but the Rafale will most likely still spend decades with the nuclear strike mission (note that the earlier Mirage 2000N was completely retired only back in 2018). All SCAF systems are to be in place around 2040, though that is both an ambitious timeline and likely more of an IOC than a FOC.

Now, the Finnish Defence Forces are decidedly conventional, but they still need to be sure of the same two things as their French counterpart: that their fighters are available and serviceable when called upon, and that they will be able to survive in hostile conditions both today and tomorrow, out to 2060. And there are few better guarantees that something will remain up-to-date than a major power seeing it as a vital national interest.

French fighters and an accompanying A330 MRTT which flew the non-stop 12 hour mission deploying to Tahiti earlier this year. Source: C. Vernat/AAE Facebook

As has been discussed on the blog earlier, the Rafale itself is a rather good for Finland. While the homeland oriented nature of the FDF means it isn’t going to fly to Tahiti any time soon, the ability to load up with extra fuel for extended endurance during air policing missions is nice. Using extreme low-level operations and advanced electronic warfare to operate within range of Russian sensors and weapons is also a nice feature which slots well into the kind of Goldilocks-transformation the FDF likes: building upon current Finnish CONOPS with evolutionary rather than revolutionary upgrades. The French national security policy is also rather well aligned with the Finnish one in the main point that security needs to rest on sovereign capability, which then is backed up through multiple levels of partnerships and capabilities allowing common operations. The fact that this is the only ITAR-free offer is also worth noting, as even US companies struggle with the US export control bureaucracy enough that they see it as a selling point (see Boeing’s ATS). In the same way as BAES, the message of full freedom to operate the aircraft and all supporting systems is a key part of the offer, and even if Finland currently has a US-based model that apparently works well, it is hard to overstate the peace of mind the promised “immediate full autonomy” would bring in the post-Trump era.

But what exactly is in the BAFO? Dassault, never one to be overly talkative, takes the line of not commenting on numbers. This is less of worry in my personal view than BAES not doing the same, precisely because Dassault (as opposed to BAES) has overall taken a rather more closed policy when it comes to communications. Still, it would be nice to hear a ‘6x’ number as confirmation.

Instead, the official line is that the offer cover:

Replacing the capability in full now offered by 64 Hornets and adding new capabilities.

For weaponry, you won’t see a statement, but it is made clear that the graphics shown to the assembled media is no accident but tailored to accompany the HX media events. As such, quite a bit can be concluded.

Part of slide shown to Finnish media and showing expected operational loads based on the weapons offered in the BAFO. Picture source: Dassault Aviation

The first thing that pop out is that the French expect their love of external drop tanks to carry on to Finland in case of a win. While the Finnish Hornets regularly are seen with drop tank configurations typical of USN usage, I still believe the full three-can configuration to be somewhat overkill for Finnish everyday flights. In any case, that’s hardly the interesting detail here.

Top-centre is the full air-to-air load. Notable is that Dassault has unlocked two additional slots for the Meteor compared to the current AAE-configuration, bringing a total of four very-long range Meteors, two medium-range MICA IR with imaging infrared seekers, and two medium-range MICA EM with active radar seekers. The load is smaller than those sported by some of the competition (such as Eurofighter with six Meteor and two ASRAAM or Gripen with seven Meteor and two IRIS-T), but is still on the high end of what can be expected from an operational wartime load and will burn through missiles stocks at an impressive rate once you start flying at a high tempo. The additional Meteor-stations have long been identified and preliminary testing has been done, but up until now France has decided against investing in the final certification work.

An interesting option is the top-left one, which is an anti-ship loadout sporting a single AM39 Exocet radar-seeking antiship missile as well as the two Meteor and two plus two MICA for self-defence. From the original more careful wordings given during the early stages of HX it now seems evident that the Finnish Air Force is seriously considering kinetic anti-ship weaponry for the HX-platform. The current Exocet is a long way from the original weapon that wreaked havoc in the Falklands and in the Gulf during the 80’s, but the basic design is still the one the FDF prefers when it comes to killing ships: big, slow, with an active radar seeker and a serious warhead. The antiship weapon on offer is unlikely to be a deciding factor, but the Finnish Navy will most likely be nodding approvingly if they end up receiving air-launched Exocet support.

250 kg AASM being installed on a Rafale during operations in the Middle East. Picture courtesy of © Dassault Aviation – A. Paringaux

Bottom-left and -centre are more traditional air-to-ground modes with the French AASM ‘Hammer’ series of guided missiles (the baseline bomb is fitted with a rocket propulsion unit as well as guidance kit). The particular versions of this modular weapon family shown in the presentation is obviously somewhat difficult to deduce, but safe to say is that the left one shows three 1,000 kg weapons (to be introduced on the F4-standard) while the middle one shows the operationally used with six 250 kg weapons. Both loads also feature two MICA IR and two Meteor for self-defence.

The heavy-strike weaponry is shown in the lower-right corner, and unsurprisingly shows two SCALP (Storm Shadow) heavy cruise missiles as well as MICA IR and Meteor missiles. Nothing strange here, and this loadout as well is in operational use by the French Air Force.

The upper right is the most interesting one, as it shows an uniquely Finnish alternative which I believe hasn’t been discussed in any other deal. We have nothing less but four JSM missiles (as well as two MICA plus two Meteor). With the Exocet providing the heavy antiship missile and based on the material provided by Dassault back last year in Kauhava, it seems evident that this is the SEAD/DEAD weapon of choice for targets that are just a bit too dangerous for one to want to bring the AASM to the fight (although it would be a mean ship-killing one as well). How this fit the requirement of a standard aligned with the main user is unclear, and the hole in Rafale’s armament between the AASM and the SCALP is as far as I am aware of the only instance in HX where a contender has had to integrate a new capability to cover Finnish requirements (the Swedish political decision to buy whatever Finland does in case of a Gripen win obviously being something of an outlier). While there’s pros and cons of a signal-seeker compared to a more traditional weapon in the SEAD-role, the JSM isn’t necessarily a worse weapon in the role compared to something like the AARGM-ER, as while targeting becomes more complicated it will instead offer increased flexibility to affect other kinds of targets such as large TELs and C2/C3-nodes.

Parts of Libyan Palamaria SPGs that belonged to a group of six that were destroyed by Rafales on 19 March 2011. The Rafale started flying swing-role missions with the introduction of the F2 standard already back in 2006. Source: Bernd.Brincken via Wikimedia Commons

There has been some claims that the datalink used by the Rafale for the Meteor is suboptimal for the purpose as it is originally designed for use with the MICA. While Dassault isn’t commenting on that specifically, they did note that the Rafale has an advanced datalink for use both between aircraft as well as between weapons. This allows for, among other things, passive collaborative identification where fighters share data from passive sensors, and fuse the sensor data to provide identification and firing solutions. Another possibility is to hand over Meteor mid-course guidance to another Rafale, allowing e.g. a Rafale to close passively and fire the weapon, after which it turns away and a second Rafale with the radar active at stand-off range takes over the guidance of the missile. As major-general (ret.) Joel Rode was happy to point out, the important part isn’t so much to just carry the Meteor, but how you are able to integrate it into the aircraft’s subsystems and how you employ it. And here, Dassault is very happy with the work done. The upcoming MICA NG which will be online by the time the HX reaches full operational capability is also set to give a serious improvement to the short- and medium-range punch of the aircraft, with new seekers for both versions and a new double-pulse rocket motor which will not only give longer range but significantly improve manoeuvring towards the end of the engagement.

Backing up the passive capabilities, the SPECTRA and its associated systems have generally received high marks, and according to Dassault the system was described by Finnish officers taking part in an exercise of the MACE-series of NATO research and testing exercises for aircraft self protection systems and tactics in Slovakia as “The Reference” in terms of detection and jamming capability.

Speaking of the highly complex world of electronic warfare, Dassault is the only contender to offer a combination of single- and twin-seat fighters for general operational use. Perhaps the best description of the value of operational twin-seaters in HX was ironically enough provided by Saab back before the “alignment with the main user”-requirement stopped the inclusion of the 39F in their BAFO:

Often there are other drivers for and needs of a two-seat aircraft configuration that, in combination with the more traditional training-related benefits, makes it relevant to procure two-seat fighters. […] Gripen F with its two seats, naturally provides additional flexibility to handle very advanced missions where it may be advantageous to have an additional pilot or operator on-board. Examples are Electronic Warfare Officer, Mission Commander and/or a Weapon System Officer in the rear-seat.

Saab might have been unable to proceed, but as France uses a mixed Rafale B/C-fleet for operational missions, they are happy to run with it. As mentioned, the exact numbers aren’t provided, but Benjamin Gardette, HX campaign director, note that the Finnish Air Force mix of 57 single-seaters and 7 twin-seaters is good if you only want the latter as a conversion/training platform, but that if you want operational usage you probably want to increase the number of twin-seaters. To give a hint of the numbers that could be involved, my understanding is that currently two out of the five operational Rafale squadrons (not counting test and evaluation or OCU units, nor forward deployed ones) fly the twin-seater on complex strike missions, both conventional and nuclear. For a hypothetical 64 aircraft fleet, that would mean 26 twin-seaters. Saab was planning on offering 12 twin-seaters (18 % of the total fighter number), which is a number closer to what I would expect for Finland based on the current lack of WSO/EW-specialists in the fighter force as well as no need for the nuclear mission. Still, that is pure speculation on my part, and it would be interesting to see where the eventual number lands. It is also highly possible that the BAFO include options of adjusting the ratio either up or down from the figure suggested by Dassault.

For the industrial participation side of things, Dassault believe that “up to” 5,000 jobs could be the outcome once calculating both the direct and indirect ones. The number is high, but roughly in line with the figures released by Saab and BAES. This isn’t really surprising, considering that all five industrial participation packages aim to cover roughly similar sums. A more interesting detail of potentially higher importance is that Dassault mention that they offer “Intellectual Property Rights free of use”. IPR-regulations is a highly specialised legal field, so I will avoid straying too far into it as I am bound to get something wrong. However, on a high level one can safely conclude that the free use of IPRs is a big deal, and likely one that is easier for the European contenders to offer compared to the US ones.

Designed to master the best known adversaries, and upcoming threats

There’s no denying that the choice of Rafale would constitute a major shift in bilateral cooperative patterns for FDF in general and the Finnish Air Force in particular, and that it would be a surprising outcome of HX. There’s also nagging questions about the cost and availability of quick refills of weapon stocks of the rather unique weapons offered with the aircraft, and France’s willingness to sell high-tech systems and platforms to anyone with money (including Russia) raises political concerns. Still, there’s much to be said for why the Rafale makes sense for Finland, including not only the performance of the platform itself but also how it slots into the Finnish concept of operations and the sovereignty it offers. The unique selling point of a combat-capable twin-seat fighter can also turn out to be quite the ace in their sleeve if it plays out well in the FDF wargames. The announcement of HX could well turn into a watershed moment in Finnish national security, but further increasing the attention the French armed forces give to developments around the Baltic Sea would hardly be a bad outcome in and of itself. Even as a conventional platform, there’s definitely a certain amount of dissuasion the canard born next to the Côte d’Argent would bring along to Finnish skies.

Lifting the Fog

Lockheed Martin’s bid for the HX programme is likely the one that has caused the most speculation, and this blog has seen its fair share of that as well. Scott Davis, Lockheed Martin’s Managing Director for Finland, was happy to chat and clear up some of the remaining confusion.

Let’s begin with the elephant in the room: the offer in their BAFO is for 64 F-35A, and this is most certainly the number the company expects to supply Finland in case they win. The package of weapons they would supply does include an undisclosed number of weapons that include AIM-120C-8 AMRAAM, JSM, and AGM-158B-2 JASSM-ER. All of these are included in the BAFO as regular to-be-delivered items, and not as options. Davis acknowledged that he had been unnecessarily vague in his comments at the earlier HX media event, leading to speculation about options to adjust the figures either up or down. However, it is now evident that Lockheed Martin joins Boeing and Saab in the 64 fighter-game.

A pair of Norwegian F-35A taking part in Arctic Challenge Exercise 21 that just finished. The drag chute used by the Royal Norwegian Air Force is an option in the Finnish tender. Source: Mathias Charman / NATO Allied Air Command

The JASSM-ER needs no further introduction, as in essence it is an upgrade of the Finnish Air Force current silver bullet. The weapon slings a 450 kg warhead out beyond 900 kilometers, where an IIR-seeker provide terminal guidance. The current weapons sport a one-way datalink, but it seems like the AGM-158B-2 will feature the updated two-way WDL of the AGM-158D JASSM-ER (the missile formerly known as JASSM-XR). Is it better for Finnish requirements than the Taurus KEPD 350? The Finnish Air Force thought so last time around, but as noted in my last post the weapons sport rather different design philosophies, and it isn’t necessarily a question with a straightforward answer.

A weapon in the class of the JASSM is needed to wipe out certain hardened targets, but the smaller weapons also offer interesting capabilities, especially as internal carriage offer other benefits besides stealth as well. As long as the weapons are carried internally an external observer will not be able to say if the aircraft is loaded, and in that case with what kind of weaponry. For an Air Force that cherish ambiguity – perhaps a bit more than really is healthy – being able to both train and perform QRA-missions in peacetime without sneaky plane spotters with diplomatic immunity being able to tell what the aircraft carries is likely to captivate their imagination. This allows for example raising the number of AMRAAMs carried in response to intel you don’t want the adversary to know you have, or even to change the loadout from a pure air-to-air one to a land-attack or anti-shipping one, all depending on the situation (you can obviously also do the classic ‘lets fly by their ship at low altitude with doors open and show that at least one aircraft carries JSM’ to really have them guessing about how many of the F-35s zooming around are ‘just’ fighters and how many are potential threats to maritime forces). It’s not a war-winning feature, but it is a positive secondary effect recognised already during the Cold War when USAF F-102/106 deltas were flying around at potential flashpoints.

The 55Zh6M radar of the Nebo-M complex is a mobile VHF-band radar that is built to provide early warning of incoming stealth platforms. Source: Vitaly Kuzmin via Wikimedia Commons

Davis understandably was interested in discussing electronic warfare, considering the in his opinion oversimplified illustration that featured on the blog a while back. Showing a generic strike fighter unable to jam anything but the X-band, the impression was that the ‘Strike Fighter’ would have a hard time without its buddy the EA-18G Growler that provide multi-band support. Davis, however, isn’t impressed.

Fourth generation fighters are correctly standing off well outside of the threat rings, as they should. Our threat rings are exponentially smaller. […] I can’t tell what our [jamming] bandwidth is, but it is more than just the X-band.

As has been discussed earlier on the blog, the key jammer on the F-35 is the large AN/APG-81 AESA radar, which thanks to its size produces a thin and accurate jamming beam which is harder for the adversary to detect. Another benefit is the availability of the onboard power (read: engine) and cooling systems, which allows for a very higher jamming output power. This in turn is further enhanced by the F-35 being able to get in closer, or as Davis put it: “Our jamming signal is ten times as powerful as podded systems, so we’re closer because our stealth allows it and more powerful.” However, that still leaves the question of the other bandwidths, such as the low-band radars that are growing in popularity thanks to their better anti-stealth characteristics. But here as well the F-35 has the answer: it will blow them to pieces. The response might come of as arrogant, but isn’t without merit. The antenna arrays tend to grow with wavelength, meaning that the systems outside of the those which the F-35 can jam tend to be rather large and not moving around in the same way as their lighter compatriots. The F-35 signal gathering capability as well as unique datalink and ability to operate as a formation all combine to give it a high situational awareness, which should make the kinetic response a more feasible tactic compared to many other platforms. Granted, while you in the grey zone might possibly jam hostile sensors, you don’t really get to blow them up unless it is a full-blown war, and you don’t block enemy communications through blowing things up, so there is still a lack of flexibility compared to dedicated EW-platforms such as the Growler when discussing manoeuvres in the electromagnetic spectrum (which seems to be the next trend, brace yourself for new and exciting buzzwords!). On the other hand the F/A-18 Hornet-replacing capability the Finnish Air Force asked for in HX didn’t include communications jamming so it remains to be seen how the FinAF judges the value of these.

Another issue raised by the illustration was the question of what happens on the egress, when the aircraft have turned their tails towards the threat. Davis isn’t too worried about that prospect either (and it should be noted that he has actually flown fighters operationally for quite a few years).

I put no great importance in the fact that the jamming is just in front – there are other aircraft in the formation that could support from behind for example

The engineer in me would like to point out that at some point the second pair of fighters in the formation will have to turn around as well, but it is a good reminder of the fact that judging the capabilities on a single fighter vs. fighter rarely gives the complete picture.

Norwegian F-35As participating in a Red Flag exercise earlier this year. The exercises are widely regarded as the gold standard when it comes to large realistic exercises simulating a high-end air war, and the F-35 has reportedly built up a solid reputation among the participants. Source: Forsvaret.no

Another issue that Davis liked to comment was the notion by Saab that their unnamed competition according to Saab’s analysis would be able to maintain around 35 fighters mission capable in a Finnish scenario. Davis noted that he was unable to say if the comment was directed towards the F-35 (neither am I as Saab didn’t say, though I would think it’s a fair guess to assume so) that in their case it is certainly not correct. Despite the issues still plaguing the F-35, including the engine shortages, the aircraft still reached a 76 % mission capability rate in the USAF during 2020. Crucially this happened while the cost per flight hour continued to come down, meaning that the growth in the mission capability rate was organic, for the lack of  a better word, and not just a case of stocking up with more spare parts. So far peacetime rates of over 80 % are routinely seen, with some units even clocking about 90 % at times. More impressive is that a number of Red Flag exercises have seen the participating F-35s pull through the whole three week exercises without losing a single sortie due to maintenance or reliability associated failures. The core message here from Lockheed Martin is that in times of crisis, “almost all” of the 64 Finnish F-35s would be available for service, and there’s an interesting anecdote to back up this claim: recently Eielson AFB (every Finnish F-35 watchers favourite base as it sits at the same latitude as Rovaniemi AFB) had a snap readiness check to get the maximum number of aircraft ready within 24 hours. The end result was that by the end of that deadline 26 out of 26 F-35A were mission capable. While Davis didn’t point it out but stuck to discussing ‘his’ fighter, one thing is evident: he has the anecdotes to back up his readiness claims, something that Saab hasn’t as the 39E isn’t in operational service yet.

As noted in earlier posts, Finland would also receive a “great” security of supply program through the industrial participation package which would include manufacturing of stealth panels and major component assembly, ensuring that in times of crisis there would be local know-how available to ensure that the aircraft stays flying. An interesting detail is that opposed to for example the Danish or Polish F-35 buys, Finland actually have gotten firm commitments for an undisclosed number of components (including panels) not only to the Finnish fleet but to the global F-35 fleet as well. This in turn touches upon perhaps the strongest single selling point of the F-35A, and one that has received surprisingly little attention in Finnish media. The global fleet is significant, or even huge compared to most of the competitors, and a sizeable part of it is found in Europe among our close partners. In the words of Scott Davis:

We offer Finland a platform you won’t be the last user of

While the F/A-18C Hornet has on all accounts been a huge success for Finland, the cost of not being able to align the upgrades with the main user has meant that keeping it relevant has been more expensive than the FDF would have liked to. With 400+ F-35s in Europe by 2030 purely based on already signed contracts, the risk of that happening with the F-35A is negligible. The global F-35 fleet has also been rather busy showcasing its capabilities in the last few weeks, including Norwegian F-35As participating in ACE 21, as well as HMS Queen Elizabeth not only launching RAF and USMC F-35Bs operationally on combat missions over the Middle East, but also seeing RAF aircraft taking part in an austere forward basing exercise with Italian F-35s. While there are levels of austere basing and people might argue about whether the exercise was as demanding as a road base in Finnish winter conditions, the fact is that much of Finnish Air Force dispersed operations would likely take place in roughly similar locations with the use of smaller civilian airfields with limited rather than non-existent infrastructure.

Night operations aboard HMS Queen Elizabeth. While it is unclear if any ordnance has yet been released by aircraft operating out of the carrier, the combat missions in themselves are somewhat historic ones, as they represent the first carrier-based combat operations flown by the UK since the Libyan operation as well as the first combat missions flown by US aircraft from a foreign carrier since 1943. Source: Commander UK Carrier Strike Twitter account

The F-35A is in many ways the fighter which likely would change Finnish Air Force tactics and wider concepts of operations the most, and I ask Scott Davis whether he is worried that the F-35 won’t show its full capability in the Finnish wargames due to those involved using current tactics developed for the Hornet? He confirms that while it is true that the tactics need to be revised due to the increased situational awareness and very-low observability of the F-35, he isn’t worried about the evaluation. The Finnish team has by now ample experience from both briefings and flying the aircraft in simulators aided by both operational USAF pilots and Lockheed Martin personnel, and he is confident that the F-35 will show its best side in the evaluation.

I am impressed by the level of detail the HX-team got into […] We are confident it will be a fair evaluation

Cruise Missiles for HX

From the outset the Finnish Defence Forces have been stating that they are not replacing a multirole fighter (and thus buying a new one), but instead they are replacing the capabilities of it (and thus buying a new one to provide the same capabilities as the old one). This might look like semantics, but was suddenly brought to the forefront when the RFI for weapons and external sensors was sent out.

Short background: the current Finnish Hornet-fleet sport five different weapon types (plus an internal gun). The AIM-9 Sidewinder (in L- and X-versions) provide short-range air-to-air capability, while the AIM-120C provide medium-range air-to-air capability. With the MLU2 air-to-ground weapons have been brought in as well. The JDAM-series of guidance kits are fitted to ordinary 225, 450, and 900 kg bombs (official designations then being GBU-38, GBU-32, and GBU-31 respectively). These use a combination of internal navigation (INS) and GPS to provide accurate hits on the target. The main problem is that hitting moving targets doesn’t really work, which have prompted the creation of other guidance kits sporting laser guidance in combination with INS and/or GPS. These have however not been acquired by Finland. Also, the range is short, and in practice the fighter has to overfly the target. Still, the JDAM is cheap and reliable, and has proved a favourite in Afghanistan and the Middle East. Time will tell if the recent GPS-jamming incidents will cause issues for weapons which rely on GPS for navigation and/or target acquisition.

17991321_1397309040333071_9165776923558989985_o
Finnish F/A-18C Hornet upgraded to the MLU2-standard displaying AIM-9X and AIM-120C air-to-air missiles as well as JDAM and AGM-158 JASSM air-to-surface weapons. Source: Ilmavoimat
A solution to getting more range out of a bomb is to fit it with wings, which leads to the AGM-154 JSOW. The JSOW feature folding wings which deploys after launch, letting the weapon glide towards the target. Three different versions are found, of which two hold submunitions (‘cluster bombs’), while the third is a single BROACH-warhead. The BROACH feature a two-stage warhead where a small(ish) shaped charge first blows a hole in the target, which the main warhead the flies through and detonates on the inside of (see this Australian clip of a live-fire test, the slow-motion entry is found at the 0:54 mark). For improved accuracy the AGM-154C with the BROACH feature an infrared seeker for terminal guidance. In Finnish service the JSOW is something of an enigma, with both the number of weapons and version acquired being unclear to me. I had originally thought the JSOW had been acquired in a very limited number for test and evaluation purposes only in case the JASSM wouldn’t be cleared for export, but during Ruska17 it was mentioned as part of the Finnish arsenal. It seems likely that a small number of AGM-154C JSOW are found as a cheaper mid-range solutions for targets which might be too well-defended for a JDAM-run. The big problem with the JSOW is that as it lacks an engine, its range is highly dependent on the speed and height of the aircraft when launched.

The silver bullet in the Finnish airborne arsenal is the AGM-158 JASSM. The JASSM feature a 450 kg penetrating warhead in the form of the WDU-42/B, and is powered by a small jet engine giving it significantly longer range than the JDAM and JSOW. The cruise missile is stealthy, and navigates by combining GPS and INS during flight, before switching on a IR-seeker for terminal guidance. It is a smart weapon even by modern standards, and dives towards the target at different angles depending on the amount of penetration needed (steeper for harder targets such as bunkers). All this also makes the weapon rather expensive, with the DSCA listing the Finnish request for up to 70 weapons at an estimated value of 255 million USD.

These are the capabilities to be replaced: the ability to shoot down enemy aircraft at different ranges, and to strike hard but not necessarily moving targets at all ranges.

It is important to remember that the weapons work already before release, in that any potential attacker has to calculate with the Finnish Air Force being able to launch a strike taking out key installations such as bridges and command bunkers deep behind enemy lines without ever being close to these. The psychological effect of the nagging knowledge that when getting inside a few hundred kilometers of the frontline you are always under threat should not be underestimated.

160323-N-ZZ999-110
An F-35C Lighting II conducts separation tests of an AGM-154 JSOW. The white dots are photo calibration markings. Source: U.S. Navy photo by Dane Wiedmann via Wikimedia Commons
The press release on the RFI was rather bland, but Jarmo Huhtanen of Finnish daily Helsingin Sanomat had an interesting interview with engineering brigadier general Kari Renko. Renko dropped a very interesting comment, which will have huge consequences for the HX-program.

We won’t go down the route of starting to develop the integration of machine and weapon. We’re buying missiles, their documentation, transportation containers, training, and so forth.

He also mentions that the weapons and sensors will account for roughly a tenth of the total budget, i.e. in the neighbourhood of 700 million to 1 billion Euros. A second interview with program manager Lauri Puranen (retired FiAF major general) in Finnish paper Talouselämä takes a slightly different view, putting the total weapon cost at 10-20% of the total value, i.e. 700 million to 2 billion Euros, though he notes that there is no idea in buying the whole stock immediately upon ordering the fighters, as the weapons have limited shelf life (this might explain the difference their estimates). This sounds about right for providing a small stock of short- and medium-ranged air-to-air missiles and a few different air-to-ground weapons. A short mention of DSCA cost estimates for similar weapons from recent years.

It must be said that this is a very Finnish way of making defence acquisitions. Buying just behind the cutting edge, at the (hopefully) sweet spot where the R&D work is done and the true costs are known while still modern enough to be considered high-tech. The package above comes in at 1.08 billion Euros and would be something of a bare minimum (e.g. 64 fighters would get an average of 4.7 AMRAAMS each, meaning that after the first wave was launched there wouldn’t be any reloads to talk about). The Finnish order is also likely to be more air-to-air heavy than the mix above would be.

It also means that if Renko (who have his roots in the Air Force) is to be taken literally, the HX-field will be turned upside down.

The air-to-air part is no problem, all contenders have sufficient missiles integrated. Guided bombs are also found, though in most cases not JDAM’s but rather laser or hybrid laser/GPS/INS-guided ones. It is questionable if the JSOW is actually needed as the Goldilock-solution between a guided bomb and a cruise missile, and if it is a priority to be bought at the beginning of the project. In any case, it is fully integrated on the F/A-18E/F Super Hornet, while the Rafale feature the AASM ‘Hammer’-series of modular guidance/propulsion kits which include interesting versions that also exist in the middle ground between guided bombs and ‘true’ missiles.

© Alex Paringaux
A Rafale C in flight equiped with wingtip Mica IR air-to-air missiles, 2000 ltr drop tank on inboard station and SCALP-EG (Storm Shadow in British service) cruise missile on the outer station. Source: © Alex Paringaux courtesy of Dassault Aviation
The big dealbreaker is the cruise missile. If Renko means business, that the HX need to have a long-range cruise missile with a serious penetrating warhead ready by the time it reaches full operational capability in the 2029-2031 time span, two of the top-contenders have a problem at their hands.

The Rafale and the Eurofighter Typhoon both sport the joint-French/English SCALP/Storm Shadow. This is a highly potent weapon in the same class as the JASSM, including a stealthy design, and is combat proven over Iraq, Syria, and Libya. The Rafale already carry the weapon, while the Typhoon is about to get it as part of the P3E upgrade currently underway. As such, both should welcome the news that this is a requirement.

The F/A-18E/F Super Hornet just might get a pass, as it sport the Harpoon-based SLAM-ER with a 360 kg WDU-40/B titanium-reinforced penetrating blast warhead. The SLAM-ER feature many of the same capabilities as the JASSM (though being lighter and shorter-legged), and is the US Navy’s answer to the gap created in their inventory when they dropped out of the JASSM-program. The fighter is also in the process of getting the AGM-158C LRASM, the anti-shipping derivative of the JASSM, which might offer a possibility to fast-track AGM-158A/B integration once complete.

JAS 39C/D Gripen have no long-range ground attack capability. This will be remedied by the upcoming Rb 15F-ER which while developed from the RBS15F anti-ship missile will also have a secondary land-attack capability. However, the weapons main use and roots are shown by the warhead which is a 200 kg blast fragmentation one. Excellent for ships, but despite having delayed fusing options this likely lacks the penetration to be able to take on hardened targets.

The F-35 is the other big question mark, with the JASSM not confirmed for the fighter. It has been cancelled for the Block 4, with one spokeswoman saying they “expect it” in the Block 5 timeframe which “is expected to begin in 2024”. The scope of Block 5 is still undecided, with one aviation journalist describing it’s status as “just a collection of tech that didn’t make the cut for Block 4“. RAF/RN had originally planned for the Storm Shadow to equip their F-35’s, but has since dropped it. As such, the F-35 have no confirmed cruise missile for hardened targets at the moment. The one missile which is confirmed is the JSM, which like the Rb 15F-ER is an anti-ship missile with secondary land-attack capability, and which also feature a 200 kg combined blast and fragmentation warhead. Manufacturing partner Raytheon is happy to call it “the only fifth-generation cruise missile that will be integrated on the F-35”, which is likely more of a marketing line than an indication of the company sitting on information that the JASSM has been cancelled for the F-35.

Taurus KEPD
Taurus KEPD 350 displayed together with the JAS 39D Gripen at the Tour de Sky airshow in Kuopio, Finland, back in 2016. Source: Own picture
The answer to the Gripen’s woes would have been the Taurus KEPD 350. The joint Swedish-German missile is carried by German Tornadoes, Spanish EF-18 Hornets, and (soon) South Korean F-15 Eagles. Preliminary flights have been undertaken by the Gripen (and the Eurofighter for Spanish and German needs), but the missile was never integrated on the 39C/D, and it’s future as part of the 39E’s arsenal is still unclear. The Swedish then-government/now-opposition signalled back in 2014 that they “want cruise missiles on the new Gripen”, though it has never been clear whether this means the RBS15F or some heavier land-attack missile. In any case, no firm order for KEPD 350 integration onto the Gripen has been made, and it is difficult to see a Brazilian requirement for it. The KEPD 350 is however actively marketed as an option for the Gripen by Saab.

While Puranen’s cost estimate of the weapon package might be higher than Renko’s, he is of the same opinion when it comes to integration costs.

Our position is that the aircraft suppliers are responsible for the integration of the weapons found in their offers, and that the costs for this are included in the offer.

This leaves Lockheed-Martin and Saab with something of a conundrum. Unless JASSM or another suitable missile is confirmed for integration before 2030 by another paying customer, and unless this confirmation comes before the final offers are made in 2021, the companies will have to include the complete integration costs when calculating their bids to Finland. Obviously the majority of the costs will be funneled back directly to their HX-bid (TANSTAAFL), while the Rafale and the Typhoon will be able to make their offers without this additional cost (or at the very least with a significantly reduced one). It also raises the question which missile they should choose to offer. While there has been much speculation about keeping the JASSM’s, their shelf-life does in fact end about the time the Hornets are withdrawn.

JASSMed
Gripen E model in Finnish colours displayed by Saab at a Finnish air show. The model is armed with Rb 15F, Irist-T air-to-air missiles, and JASSM. Source: Own picture
Saab has been marketing a willingness to integrate the JASSM if Finland requests so. However, if they are free to offer the long-range strike option in whichever form they want, doing so by integrating their own Taurus instead of Lockheed-Martin’s JASSM might certainly be tempting, especially as the Taurus offer some unique gimmicks such as the ability to detonate at a specific pre-set floor. Another possible solution which might be tempting for both manufacturers would be to develop penetrating 500-lbs warheads for the JSM and Rb 15F-ER, as this might turn out to be a cheaper solution than integrating a completely new weapon. Still, when it comes to penetrating warheads, mass matters, and it is clear that this would be an inferior solution compared to heavyweights such as the JASSM, Storm Shadow/SCALP, or Taurus.

The quest for MTO XX

The main anti-ship weapon in the current Finnish arsenal is the MTO 85M long-range anti-ship missile. This is a version of the widespread Saab RBS15 surface-to-surface missile named RBS15 SF-III (often this designation “Third version of the RBS15 for Suomi/Finland” is mixed up with the RBS15 Mk3 designation, which denotes a newer version, more on this below).

The MTO 85M is found on both the Rauma- and Hamina-class FAC, as well as on truck-mounted batteries firing from land. Notably, Finland has not acquired the air-launched version of the missile. The MTO 85M with its 100 km range make up the outer ring of defence against enemy surface units, and is then backed up with the 130 TK turret-mounted coastal guns firing 130 mm anti-ship grenades at ranges over 30 km and short-range RO2006 (Eurospike-ER) missiles being carried by infantry squads. The short range of the latter, around 8 km maximum, is made up for by the fact that the infantry squads are extremely small and mobile, and as such can move around in the archipelago to set up ambushes at choke points or guard minefields from being swept. However, when push comes to shove, it will be the MTO 85M that will have to do much of the heavy lifting.

Isometrinen
One of the early renders of the upcoming corvette, featuring twin quadruple launchers mounted just aft of the mast. Source: Defmin.fi
With the launch of the Squadron 2020 project, one of the main issues will be what (or which) weapons it will feature for the anti-ship role. Preliminary renders have shown twin quadruple launchers mounted amidships, not unlike those used for the US Harpoon anti-ship missile. The Harpoon has, in a number of variants, been a sort of de-facto NATO standard (together with more famous Exocet), and new versions keep being rolled out. In many ways, the Harpoon, Exocet and RBS15 are comparable. All feature a radar seeker in the nose, are comparatively large, and uses an attack profile where they approach the target at high subsonic speeds at very low altitude, skimming just a few meters over the waves. All three are available in truck, ships, and air launched variants, with the Exocet and Harpoon also being found in submarine launched variants (this obviously being a largely academic talking point in the case of Finland). A new version of one of these three could very well provide the main striking power on Finland’s upcoming corvettes, and would be in line with Finland’s rather conservative view on defence acquisitions, preferring evolutionary rather than revolutionary increments.

The joker of the pack is the NSM provided by Kongsberg, and selected (in its air-launched JSM-version) to be the prime anti-shipping weapon for the F-35. The Norwegians has a reputable reference in the AGM-119 Penguin, which is a short-ranged IR-seeker missile that has seen significant export sales, crucially as a helicopter-launched weapon to the US Navy. The system was also operated by the Swedish Navy as the Rbs 12. The NSM is altogether different though, and its performance and size places it in the same category as the above-mentioned missiles, with one crucial difference: it uses a passive IIR-seeker, making it worse at handling adverse weather conditions but potentially better at coping with modern countermeasures which have heavily focused on spoofing radar seekers. It might also have an easier time in the cluttered archipelagos of the Finnish coast.

DN-SC-83-07010
A Harpoon missile blasts off from a US cruiser. Source: Wikimedia Commons/DoD
Another noteworthy “western” (with the word used in a very loose sense) missile is the Japanese XASM-3. Where most western manufacturers have preferred high-subsonic speeds, Soviet/Russian missiles have in several instances instead aimed at very high speeds, including up to Mach 3. The XASM-3, currently undergoing testing, is one of the few western projects specifically aiming for a high top-speed, with Mach 3 having been mentioned. The Japanese do have a history of successful locally-produced subsonic missiles, with the anti-shipping mission naturally being of high priority for the island nation. While this certainly brings something unique to the table, I still see it as unlikely that this Japanese ship-killer would find its way into the Baltic Sea.

For Finland, a number of pieces are bound to move around within the near future. As mentioned, the RBS15 SF-III is not the RBS15 Mk3 used by Poland, Germany, and Sweden, and will need to be replaced at some point. The system itself celebrated 35 years since the first launch this summer, and while it might sound much, by then both Harpoon and Exocet were already tried and proven systems in service. The important part is that the basic missiles of all three families have been continuously updated, and current versions share little except name and outward appearance with their brethren of the 80’s.

sisu_sk242_mto_85m_lippujuhlan_pc3a4ivc3a4_2013_3
The Finnish truck-based launcher mounting the MTO 85M. Source: Wikimedia Commons/MKFI
What happens if one fails to keep abreast with current development has been clearly shown by the attacks on USS Mason during the last weeks, where the Iranian C-802/Noor missiles apparently have scored nought for six in their attempts at targeting a modern destroyer. Important is also to recognise that while many associate anti-ship missiles with the attack on HMS Sheffield in the Falkland’s War, where the 4,800 ton destroyer was sunk by a single Exocet, history have also shown that a 150+ kg warhead isn’t necessarily enough. Four years after HMS Sheffield, the USS Stark was hit by two Exocets while sailing in the Persian Gulf, but the 4,100 ton frigate managed to stay afloat despite the damage done by the impact and ensuing fire.

For Finland, the MTO 85M is bound to receive a one-for-one replacement, and not only is it likely to be introduced on the new corvettes, but it is likely that the same missile will be implemented on the Hamina-class following their MLU and to the vehicle-mounted batteries as well. The great question is the third part of what logically would be a triad, namely an air-launched weapon. Currently the Finnish Air Force is in the situation that it feature a naval fighter, but lacks any serious anti-shipping capability. There would be a seemingly simple solution, as while the JASSM has been the flagship of the newfound Finnish air-to-ground capability, another missile has also been introduced: the AGM-154C JSOW. While the missile originally was conceived as a ‘pure’ cruise missile, the latest Block III version (C-1) is able to be used in the anti-shipping role as well. The first JSOW C-1 was test-fired from a F/A-18F Super Hornet earlier this year, and upgrading to this version could provide the Finnish Defence Forces with a diverse anti-shipping capability.

While getting anti-shipping missiles for the Hornet might not be realistic, the talk about giving HX an expanded range of capabilities compared to its predecessor gives some reason for optimism. The question then is should HX be allowed to influence the choice of new AShM?

© Dassault Aviation - V.Almansa
A Rafale M takes off with a single Exocet mounted on the centre-line pylon. Source: © Dassault Aviation – V. Almansa
For the current HX candidates, they all have their local weapons of choice. In short, the F-35 comes with JSM/NSM, Gripen with the RBS15F, Rafale with the AM.39 Exocet, Eurofighter with the Marte-ER, and the Super Hornet has a whole battery of alternatives lined up, including Harpoon, LRASM (essentially an anti-ship development based on the JASSM), JSM/NSM, and JSOW C-1. Note that for several of these, the missiles aren’t integrated yet, but in different stages between coming at some point/unfounded decision/funded/scheduled/undergoing testing.

At first glance, stating that the Navy follow the cues of the Air Force to get what they’re having might seem tempting. However, there are a number of issues with that thought. To begin with, the air- and sea-launched versions not necessarily share enough components and similarities in handling to create any measurable synergies in acquisition or training. The HX and Squadron 2020 timelines are also somewhat conflicting. The main issue is that as HX likely will get a fighter with a missile already integrated, this would create a situation where a secondary weapon system of the Air Force would determine the main striking power of the Navy. While this would equate to putting the cart in front of the horse, the alternative is that Finland would pay for the integration of the Navy’s missile of choice onto the Air Force’s fighter of choice, or that the Navy and Air Force use different weapons. This is not necessarily a bad thing, sporting different weapons makes it harder for the target to know how it should respond to a threat, but the question is if this politically will be a harder sell, regardless of whether it actually is more expensive or not.

An interesting alternative is the launchers recently sold by MBDA to Qatar. The coastal launchers are remarkable in that they can employ both the Exocet MM.40 and the lighter MARTE ER. This could be an interesting solution especially for the upcoming Finnish coastal batteries, where a hi-low missile mix could make room for more reloads while still sticking with a single launcher.  The MARTE can also be employed by the NH 90, though in the Finnish case this would probably not be cost effective. To begin with, the TTH version lack a suitable search radar, and would have to rely on outside targeting data. On today’s networked battlefield this isn’t necessarily a big deal, but the bigger issue is the fact that the Army will need every single one of their helicopters for tactical transports.

So, which missile will it be that finds its way onto our new corvettes? Harpoon is slowly on the way out for the US Navy, and while it probably will still see use for the next few decades, adopting it as a new system at this point doesn’t make much sense. The JSM with its IIR-seeker probably won’t make the cut due to its limited all-weather capability, though it could be an interesting complement as an air-launched weapon, and the apparent positive experience with Kongsberg’s NASAMS and the recent acquisition of Patria by Kongsberg might well come into play when discussing this option (especially if the F-35 bags the HX-contract). This leaves the updated RBS15 Mk3 and the Exocet MM40 Block 3. With Saab’s strong position as the current supplier of both the MTO 85M and the 9LV combat management system, they seem like the favourite. Saab has also started the marketing campaign already.

140923-N-MB306-007
A NSM being test-fired from LCS USS Coronado. Source: Wikimedia Commons/US Navy by Mass Communication Specialist 2nd Class Zachary D. Bell
But while Saab might be the favourite, MBDA should not be underestimated. The company has a wide and varied portfolio when it comes to missiles, and has the ability to offer a one-stop-shop solution for the whole missile-package for the corvettes as shown by the recent deal in which MBDA sold long-range anti-ship missiles as well as long- and short-range air-to-surface missiles to four new Qatari corvettes under a 1 billion euro deal. The deal covered Exocet MM40, Aster 30, and VL Mica missiles, which is a combination that would fit the Finnish requirements very well, and significantly boost the air defence network covering southern parts of Finland (including Helsinki). It would also supply the Finnish forces with an anti-ballistic missile capability on a platform with higher operational mobility compared to a ground-based system. Saab crucially lacks the VLS-based surface-to-air missiles, but can on the other hand bring both a state-of-the-art anti-ship missile and a modern anti-submarine torpedo developed for littoral conditions.