Survivability of a Finnish AEW&C

The news that a Finnish 39E/F Gripen order would include two GlobalEye AEW&C aircraft has lead to varied reactions, some better argued (and more reality-based) than others.

The first thing to address is that the inclusion of additional assets and the claim that they make the fighter better is not proof of a design flaw on the part of the fighter. This is true for Super Hornet and Growler, and it is true for Gripen and GlobalEye. Secondly, the recent fighter competitions the Gripen has lost have mostly been smaller contracts where the 39C has lost out against aircraft such as surplus F-16s. The Swiss decision to disqualify the 39E based on the criteria of evaluation flights this summer is in no way an indicator of how the aircraft will perform in five to ten years when HX is set to achieve IOC. There simply isn’t today a clear evaluation available in open sources that would have been apolitical enough that we can say that we know how a 2030-vintage 39E stack up against Rafale F4, F-35A Block 4, and the rest of the competition. This becomes especially true once the particulars of the Finnish Air Force and the way it operates are taken into account. It should also be remembered that the GlobalEye was included in the offer sent in months ago (and prepared last year), so trying to tie it to recent events isn’t realistic.

The first GlobalEye rolled out. Any Finnish order will be basedon the higher powered Global 6500 as opposed to the 6000. Picture courtesy of Saab

When it comes to AEW&C in general it can be said that any fighter will perform better with support from one compared to without. That hold true even as data links and sensor fusion means that individual fighters get access to significantly better situational awareness. AEW&C provide the possibility of the fighters operating with passive sensors until an opportune moment. The idea that a fighter can work as a mini-AEW, most often associated with the F-35 but by no means unique to it, has some credibility but should not be confused with a real AEW. The reasons are two-fold: size matters, as Saab’s competition has been happy to point out over the years, and the bigger power and bigger array sizes of a dedicated larger platform will translate into better performance (i.e. longer detection ranges). The second reason is the dedicated mission crew (the ‘C’-component of the AEW&C). These enjoy ergonomic working conditions and dedicated tools and training to direct the flow of battle and relay important information to the fighter pilots, who are in a stressed situation and more susceptible to information overload. As a side-note, the spotter/shooter-teaming of fighters, surface ships, and airborne sensors which F-35 (spotter) and US Navy ships (shooter) has been demonstrating is also something that Saab has been studying. My understanding is that no other contry besides the US has yet to actually demonstrate the capability in practice. However, with the choice of Saab’s 9LV combat managment system for all Finnish surface combatants, the combination of Pohjanmaa-class corvettes, Hamina-class FAC, and JAS 39E/F Gripen fighters acting as shooters with a GlobalEye AEW&C acting as the sensor(s) looks tempting.

The question which undoubtedly caused most discussion was that of survivability. While the GlobalEye have some passive sensors, when it is operating it will be transmitting with it’s radar at a relatively high power. AESA radars aren’t as easy to locate as conventional ones, but if a GlobalEye is up in the sky, the enemy will likely know that it is there and have an approximate bearing on it’s location. However, the step from spotting a GlobalEye to actually shooting it down is quite a bit. To begin with the aircraft is equipped with significant EW-capabilities, but most importantly the range of the EriEye-ER radar allows it to sit back quite some way from the action. This has caused some discussion about whether the strategic depth Finland has is enough. The answer is that if Finland has any kind of own fighter presence in the air it should be. To better get a picture of the situation, let’s temporarily forego my principles and draw some circles on a map.

All the normal caveats apply. Circles on a map should never be treated as the objective truth. These are examples of ranges, the eventual detection and weapon distances will depend on a huge number of factors. However, in this particular example I do feel that this aid somewhat in understanding the distances at play.

To our aid we’ll bring in CMANO, which is widely regarded as the best tactical/operational level air and sea warfare simulator available to the general public (enough so that it has a professional edition on offer). Again, the circles aren’t exact because OPSEC and the laws of physics, but they are good enough for our purpose. The scenario used is named Code Name: Red Island, 2016, and feature a Russian amphibious assault on the Åland Islands. That is partly irrelevant, because we will simply use it to look at a few examples of sensor and weapon ranges.

Radar ranges

Here we have a number of ground based surveillance systems. For the Russians the white fat dotted line represents a Kasta 2E2 radar (NATO-designation ‘FLAT FACE’), which is a modern Russian long-range air surveillance system. The wider white dotted line is the S-200 associated 5N87 ‘BACK NET’. Remember that the earth’s curvature will cause significant shadows at longer ranges. The two Finnish Air Force bases are Tampere-Pirkkala and Kupio-Rissala. Note the orange circles designating Finnish SAM-systems, mainly the NASAMS. Note that even in a best case-scenario from the Russian point of view, they have no picture of what’s happening over the Finnish west coast coming from their ground based systems.

Su-35 Vyborg

Here we bring in the fighters. In this case we have a number of Russian Su-35S, featuring the powerful Irbis-E PESA radar. From the Karelian ishmuts the fighters could theoretically spot Finnish fighters taking-off from Pirkkala and Kuopio, roughly corresponding to the 5N87, but as the radars are airborne they offer a better coverage of lower altitudes. However, a key point here is the significantly shorter orange circle, which is the max-range of the R-27 missiles the Su-35 (and other Russian fighters) are armed with.

Hornet ranges

Enter corresponding picture from the Finnish point of view. The white sector is the search area of the legacy-Hornet’s AN/APG-73 radar, with the orange circle representing the max range of the AIM-120C-7 AMRAAM.

A-50U Mainstay

Here we bring in the stand-off sensors. East of Gotland we have a Russian A-50U ‘MAINSTAY’ AEW&C aircraft, flying circles approximately 200 nm south-southwest of Turku. Note the huge search range, with the dotted white circle almost stretching all the way to Vaasa despite the aircraft sitting quite far back. Naturally, if Finland would have an AEW&C sitting over Vaasa, one can easily imagine a similar circle stretching down to Gotland (remember, what you actually see depends on the radar-cross section and EW capabilities of the target).

The other interesting aircraft in the picture above is the C-295 Dragon Shield SIGINT/ELINT aircraft which sits over the Gulf of Bothnia on a southbound course. The passive sensors have picked up the emissions from the Russian squadron which is still quite a bit south of the Åland Islands. As is nicely illustrated, the bearings to the ships can be quite well read from the passive sensors alone, but judging range is significantly harder.

What then, if anything, can be shown by consulting a high-fidelity computer game? The most important point is that while Finland might be narrow, it isn’t indefensibly narrow even from the air. There is still ample of air space left for stand-off sensors before we start intruding on Swedish territory (with that said, having access to Swedish air space would certainly be a plus). It also shows the huge benefit of having an airborne surveillance radar, especially once the radar shadows found at lower altitudes are taken into the picture. It should also be remebered that the Global 6500 has a ‘high-cruise’ of Mach 0.88, which means that if an enemy fighter got through, the GlobalEye would have a decent chance of if not exactly outrunning the enemy, then at least keeping the distance until the fighter needs to head back home. As such, with the current arsenal found on both sides of the border, I believe it is fair to say that the GlobalEye would be rather survivable once in the air (as long as the total collapse of the Finnish Air Force is avoided, but if that happens things are seriously going south in any case). Which brings us to a more important point.

The second GlobalEye coming in for landing. Picture courtesy of Saab

Two is a small number. The current reliability of business jets means that in peacetime it should be enough, but it leaves next to no room for operational losses. While the aircraft are rather defensible once airborne, their high-value means that they need protection while on the ground. A nightmare scenario would see them being taken out in the opening salvo of a war, either by long-distance weapons or special forces. A prime example is the 2012 terror attack on Minhas AFB in Pakistan, which crippled the country’s fleet of four Saab Erieye aircraft, leaving one destroyed and two damaged. Still, even a single GlobalEye would provide extremely valuable service to all three services in case of a conflict, and not having valuable stuff because someone might destroy them isn’t really a workable solution in war. The obvious solution here is closer integration with the Swedish AEW&C fleet, which likely will transfer from ASC 890 to GlobalEye at some point in the medium term, which would give higher redundancy in case either party suffer combat losses.

One last issue which need to be addressed is the possibility of extremely long-range missiles being used to target the aircraft from stand-off ranges. Currently this is a capability that Russia lacks, with the longest range missile in any kind of service, likely IOC, is the K-37M carried by the MiG-31BM long-range interceptor. It is envisioned that this weapon would also be carried by other fighters, but currently this does not seem to be the case. The weapon has a 200 km range from a head-on position ‘against some targets’. This is much more than a R-27, but the actual operational range is likely significantly less than advertised. A newer missile is in development for the Su-57 under the designation Izdeliye 810. The design has apparently beaten the competing K-100 (based on the second stage of the 3M83 missile from the S-300V), and the range will be in excess of 300 km. Passive homing on (fighter) radars will reportedly be a feature in the future. Coupled with the stealth characteristics of the Su-57 allowing the launching aircraft to get closer before it is discovered, this could potentially be a threat. However, considering the issues encountered with the development of the Su-57 and other air-launched weapons the final performance is a major question mark, as is the schedule for when they could enter operational service. China has a corresponding ‘AWACS’-killer in the form of the PL-X project, which was test-fired in November 2016 from a J-16. The weapon reportedly also is in the 300 km class. While further along than the 810, it is unlikely that it will ever make a showing around the Baltic Sea. In any case, very long range missiles won’t change the equation, but rather will alter the numbers involved in a significant but not revolutionary way.

This segways nicely into the most important point: to accurately forecast the impact of developments such as new weapons over the next few decades is difficult, and this is just one aspect that needs to be evaluated. Future-proofing HX for the 2050’s is hard, with key questions such as sensor development versus stealth being extremely difficult to evaluate. However, the GlobalEye (and corresponding systems) are likely to maintain their relevance over the decades. Will a Gripen backed up by a GlobalEye beat an F-35 without AEW&C support? By 2021 we should have the answer.

Advertisements

GlobalEye for HX

Saab stood for the biggest surprise so far in the HX-program, when it announced that the offer does not only include 52 single-seat 39E Gripen and 12 two-seat 39F Gripen, but two GlobalEye airborne early warning and control aircraft as well.

It’s hard to describe exactly how bizarre, and exactly how astute, the move is.

The background is obviously the way that the Finnish Air Force and MoD has written the Request for Quotations. To ensure a tough and fair competition, the quotation only sets the widest of boundaries to the delivered package (64 fighters, 7-10 billion Euros in one-time acquisition costs, annual costs to operate no bigger than current 64 aircraft strong Hornet-fleet), and then goes on to describe the concept of operations and the missions the fighters are expected to perform. This gives the companies free hands to tailor the packages offered when it comes to questions such as versions offered, sensors and weapon packages, and so forth. Apparently, it also leave open the possibility to squeeze in aircrafts other than the fighters as long as the budget allows for it. It is a daring approach from the authorities, but one that now pays off with these kinds of unconventional offers including force multipliers such as EA-18G Growlers in the Boeing package and now GlobalEyes in Saab’s.

GlobalEye AEW&C
The first GlobalEye airborne with temporary Swedish registrations and the Saab logo on the tail. Picture courtesy of Saab AB

The money game is indeed the interesting part. While Gripen is universally regarded as a cheap fighter (mind you, cheap isn’t the same thing as costing little money when it comes to fighters), it is still nothing short of shocking that Saab is able to squeeze in not only two brand new aircraft, but also the whole support structure needed to bring a new aircraft type into service and initiate training of both the flying crew and mission crew. The big question is indeed what it costs to phase in a completely new aircraft type in the Finnish Air Force? The two aircraft themselves will have a price tag measured in hundreds of millions of euros. Saab naturally isn’t sharing their calculations, but assure that this fits inside the HX-budget.

Which also include a “significant arms and sensors package” for the Gripens.

It deserve to be reiterated: it is bizarre that Saab can make a comparable offer with the same number of aircraft as the competition, and still have room for two modern AEW&C aircraft with everything they need.

But things get really strange, or rather, really elegant, once life-cycle costs are being discussed. The idea is namely not only that the GlobalEye will improve the combat effectiveness of the Gripen (and the other services, more on this below), but also that the aircraft will provide a cost-offloading effect on Air Force operations as a whole.

This cost-offloading effect, in other words, it has a positive long-term effect on the life-cycle cost from the operator’s point of view.

Fredrik Follin, GlobalEye Campaign Manager

As the GlobalEye can perform certain peacetime missions more cost effectively than fighters (and other systems it complements), Saab argues it will bring down the life-cycle cost for the Air Force as a whole by reducing the need for HX flight hours (and ensuring that they can be spent more efficiently). Is this actually possible? Considering that Saab has decided to present this possibility to the Air Force both in the preliminary RFI (presumably) and now in the RFQ, they seem rather confident. The Air Force has also likely already given some kind of tacit approval that they will take a serious look at the GlobalEye, as in case they had planned on dismissing the AEW&C out of hand this would likely have been communicated to Saab already and we would not see it in the tender at this relatively late stage.

A really interesting detail which got a somewhat ring to it following yesterday’s announcement is the blog post made by program manager major general (res.) and former Finnish Air Force commander Lauri Puranen earlier this week. Puranen discusses the cost of the project, and strongly reiterates that following the original buy, everything, and he puts further emphasis on everything, and he strongly cautions against trying to estimate any kind of acquisition costs based on publicly available figures.

It may not be credible if the flight hour costs for a modern multirole fighter are lower than those of a Hawk-trainer. In Finland, the cost of a flight hour covers everything from the salary of the Air Force Commander and the upkeep of air bases to maintenance tools and jet fuel.

He also points out that Finland won’t accept any costs at face value, but will calculate life-cycle costs based on a domestic template used, which has been proved to be correct for the current Hornet-fleet. Following Saab’s rather unconventional ideas, the question about how to calculate life-cycle costs suddenly gets renewed attention, and it isn’t difficult to see the text as an attempt at squashing the misconceptions about this topic.

Second GlobalEye
The second GlobalEye for UAE taking off on its maiden flight. Picture courtesy of Saab

What then does the GlobalEye do? In essence it is a Bombardier Global 6000, going for around 40 million USD for the normal business jet version, heavily modified and fitted with a number of sensors and operator stations in place of the normal lavish interior. The single most important sensor of these are the EriEye ER radar in the distinct ski box-installation that has become a trademark of the Swedish radar family.

The history of the EriEye deserves a short mention. Long having been involved in radar technology, Sweden, like most countries, lacked an airborne surveillance system in the 80’s. The few available where mostly large, often four-engined, aircraft with large rotating mushroom-style antennas. The only medium-sized modern aircraft was the E-2 Hawkeye, which had scored some success on the export market (and then ‘modern’ deals with an aircraft that first flew in the 1960’s). The Swedes decided that if they wanted a light airborne AEW platform, they would have to do it themselves, and the first prototype was installed aboard a surplus Metroliner they had used as a transport. This was followed by a number of orders for ever more complex installation, with both Saab 340 and 2000, and later the Embraer EMB-145 acting as platforms depending on the customer was. Of these, the Swedish Air Force operate the Saab 340-based Argus. Notably, Pakistan reportedly used their Saab 2000 EriEye to great effect during the recent clashes that lead to the downing of an Indian MiG-21. The ASC 890 Argus is no stranger to the Finnish Air Force, as it has been used both with and against Finnish Hornets in several bilateral exercises during recent years.

20170524_hamhag01_F21_ACE17_landningar_0251
Swedish Air Force ASC 890 Argus coming in for landing during exercise ACE 17. Source: Hampus Hagstedt/Försvarsmakten

However, over time the EriEye has evolved. Having originally been little more than an a flying air surveillance radar, the GlobalEye is a true ‘joint’-capability, or as Saab likes to describe it: a ‘swing-role surveillance system’. This means that the aircraft is able to keep an eye not only on the air domain, but can perform sea and ground surveillance as well. Here the ErieEye ER is backed up by two secondary sensors, the ventrally-mounted Leonardo Selex ES SeaSpray 7500E AESA maritime surveillance radar with a full 360° field of vision, and the electro-optical sensor in front of it. However, the S-band EriEye ER has some new tricks up it’s sleeve as well, and when asking if it can perform JSTARS-style ground surveillance, I got the answer that the aircraft feature the:

Erieye ER with specific features for ground surveillance.

Make of that what you will, but it seems clear that the aircraft is able to simultaneously create and maintain both air, sea, and ground situational pictures, and share them with friendly forces. It is also able to command these friendly forces, in particular the fighters. This is an extremely valuable force multiplier, both in peace and in war, and something which likely everyone in the Air Force has felt was way out of our price range. The jointness of the HX-program would also be greatly supported by the GlobalEye, as e.g. the Navy’s new missiles have a range far beyond the horizon of the firing ships, creating the need for sensors with longer ranges (and there aren’t too many currently around).

Aren’t there any drawbacks then? Obviously, the biggest of which is the low number. Two is a very small number for a high-value asset such as these. The GlobalEye has a high cruise speed and an extremely long endurance, meaning that two aircraft could theoretically provide even 24/7 surveillance. Still, the loss of even one airframe would halve the force, giving poor redundancy. On the other hand, even one is still significant more than zero… The other question is if Finnish air space is too shallow for an AEW&C aircraft to be used effectively without placing it in undue risk. Here the natural answer is to place the station further back inside Swedish air space, but while it seems an obvious answer now, it might or might not be politically feasible if things turn rough. Does the Air Force want a new aircraft type in it’s inventory is another question? The Global 6000 is a reputable aircraft, and as such can be considered low risk, but it is still a significant undertaking, and not something you usually get thrown in as an extra in a fighter deal.

GlobalEye and Gripen
The sharp end of the Finnish Air Force in 2030? 39E Gripen and GlobalEye. Picture courtesy of Saab

For the first time in the competition, someone has managed to pull an ace that I honestly feel could decide the whole thing (the aforementioned Growler came close, though).

If Saab can show that the calculations surrounding the life-cycle cost really hold true.

If the Finnish Air Force conclude that stealth isn’t a must.

P.s. Gripen really must be dirt-cheap for a modern fighter…

Combat Boats and Landing Craft

One of the earliest aspects of the current wave of close Finnish-Swedish military cooperation has been that between the marine infantry in the two countries. This was formalised as the Swedish Finnish Amphibious Task Unit (SFATU), which originally was envisaged as a crisis management tool for the littorals. In later years the scope has been increased, as can be seen during the upcoming weeks when the unit will be training in Finnish waters. Parallel to the Navy’s main exercise Silja, the unit will perform a short pre-exercise which started 27 May, and on 3 June SFATU will switch over to the main exercise and take part in Silja together with the better part of the Finnish Navy (including the marines and coastal units). The Swedish marines are joining in the fun with a total force numbering around 400 personnel and around 40 boats.

jehu and cb90 Silja Merivoimat piste fi
Finnish Jehu-class in the foreground with a Swedish CB 90H in the background. Note the differences in profile. Source: Merivoimat.fi

As usually when the two forces operate next to each other the differences in equipment has raised some questions, especially in this case where both units are tailored to operate in the same niche environment that make up the Northern and Western coastline of the Baltic Sea. The most striking difference is the combat boats used, which don’t show much of a resemblance to each other. It should be noted here that in my line of work at Kongsberg Maritime Finland Oy, formerly Rolls-Royce Oy Ab, I have come into contact with both vessels. However, all information in this post is based purely on open sources (as is all my writing). In addition, I won’t discuss concepts of operations or similar details covered by OPSEC in this post, even in cases where such information is available in open sources.

The CB 90H is a truly iconic vessel. The development work took place in the late 80’s, and the first vessels entered operational service in late 1990 under the designation Stridsbåt 90. The Swedish designation literally means Combat Boat 90, and in the same way as Strf 90 thanks to it’s export success is universally known as CV 90 the boat quickly went from StrB 90 to CB 90 internationally. From the outset the vessel was known as CB 90H (‘H’ coming from its ability to transport half a platoon) to distinguish it from the somewhat similarly looking but smaller and simpler 90E (‘E’ standing for Enkel, the Swedish word for simple).

20160604_joethu01_BALTOPS_52
A CB 90H showing the twin mounted 12.7 mm FN M2 heavy machine guns next to the bow doors. Source: Joel Thungren/Försvarsmakten

CB 90 was an almost instant success both domestically and on the export market. At a time when many navies still used open landing crafts powered by traditional propeller/rudder-arrangements or outboards it employed twin waterjets to give superior maneuverability and a very good acceleration and top speed. The vessel also came armed with heavy machine guns which could support the landing, and the possibility to lay mines or drop depth charges over the stern. But perhaps the most visually striking detail is the extremely low profile. This is made possible by moving the control station to the very front of the vessel, allowing the crew a good view over the bow despite being placed low inside the hull. The vessel scored a number of export deals, including to Norway, Mexico, Malaysia, and the US Navy (known locally as Riverine Command Boat, RCB). Both for the export market and for domestic use a number of different versions have been developed, including versions sporting ballistic protection. The latest version is the Stridsbåt 90HSM for the Swedish marines, which feature better protection, a new driveline, and provisions for a remote weapon station. The latest order means that Dockstavarvet, nowadays owned by Saab, will be able to celebrate 20 years of CB 90 production (though not continuously).

Swedish CB 90s of the 2. battalion of Amf 1 forming up during exercise Aurora 17. Source: Mats Nyström/Försvarsmakten

The general layout has been successful enough that it has been adopted by a number of foreign projects, none of which have enjoyed the same success of the original design. It isn’t completely without drawbacks though. The most important drawback is that the placement of the crew stations in front of the passenger compartment leads to a chokepoint when the marines exit between the navigator and the helmsman. Sitting close to the bow also means that the crew will experience heavier loads on their bodies when encountering waves (especially at speed in rougher conditions). Rearward vision also suffers, and in general keeping a low profile means that there are certain limitations once it comes to situational awareness and the ability to mount sensors and weapons high. Still, these are of secondary importance to a vessel whose main purpose is to get marines ashore, and fast.

Jurmo Merivoimat FB
A Jurmo under way in the Finnish archipelago. From the picture it is easy to see that the pivot point around which the hull moves when encountering a wave is rather far aft, meaning that the pitch when encountering waves in a planning vessel will be worse in the bow compared to further aft. Source: Merivoimat FB

At the same time as the Swedish Navy was busy driving around in combat boats, the Finnish marines had to make do with open and semi-open landing crafts. These weren’t necessarily bad landing crafts, but they offered little combat potential (no, a pintle-mounted 12.7 mm NSV doesn’t make a combat boat) and worse protection for both the crew and the embarked marines. On the positive side, their conventional layout meant that loading larger cargo was possible, and swiftly getting marines out of the passenger compartment was relatively easy. Having the crew at the rear also meant that slamming the bow in heavy weather doesn’t affect the crew in the same way, instead letting the unfortunate few marines closest to the bow take the beating. Especially the Jurmo-class was a very good ‘truck’ for the marines. But it was still a truck, and the Swedish marines were driving around in (light) APCs.

The answer to the demands of the Finnish marines came to be the Jehu-class, where much of the focus is placed on combat ability. The Jehu, or Watercat M18 AMC as it is known to its builder Marine Alutech, comes with both ballistic- and CBRN-protection, a roof-mounted RWS (Saab’s Trackfire RWS in Finnish service), and a serious communications suite. Following on the Finnish traditions, the passenger compartment is close to the bow, meaning that the control stations are in a raised deckhouse found midships. This means that the vessel in general will be higher (adding weight), but also offers more space for the crew working area. To compensate for being larger, the vessel has some serious power, with the twin engines being rated at 1,150 hp (compared to two times 625 hp on the original CB 90H and two times 900 hp in ‘operational‘ setting on the 90HSM).

Bigger isn’t always better, but the increased size of the Jehu compared to both CB 90H as well as earlier Finnish designs opens up new possibilities, such as the fitting of a 120 mm NEMO mortar turret (with a direct fire ability). This is a capability the Finnish Navy urgently needs, and something which almost gave the Swedish marines their SB 2010 a decade ago. In the end, SB 2010 remained a paper product, cancelled by overzealous politicians, but the concept had called for a larger combat boat, with a general layout not completely unlike that of the Jehu.

Jehu landstigning merivoimat fb
Finnish marines disembarking from a Jehu-class landing craft. Note the Trackfire RWS which is mounted high with an excellent field of fire. Source: Merivoimat FB

In the end, the CB 90H and Jehu are examples of the principle that the same operational environment can lead to rather different solutions, all depending on how you prioritise between the inevitable trade-offs.

Saab to supply 9LV for Pohjanmaa-class

The Finnish MoD today announced that they have shortlisted Saab as the preferred supplier for the combat management system, CMS, for the upcoming Pohjanmaa-class of corvettes. This does not only mean that Saab’s 9LV CMS will be at the heart of the vessel class, but also that Saab will be the main supplier and integrator of the naval systems of the vessels.

9LV Mk3E ASMD
The operator room aboard the Royal Australian Navy’s HMAS Perth ANZAC-class frigate, the brains of which is Saab’s 9LV. While the vessel is larger than the Pohjanmaa-class will be and individual systems differ, the picture gives an idea about how the operator room of Pohjanmaa likely will look. Picture courtesy of Saab

Due to Finnish internal politics the contract for the system won’t be signed just yet. As a political stunt, the outgoing prime minister Juha Sipilä dissolved the government shortly before the Finnish parliamentary elections. While the ministers stayed on as caretakers up until the elections held later this week, the main shipbuilding contract as well as the CMS contract were deemed too important to be handled by an acting minister of defence. As such, the formal contract will be signed only once Finland have a new government in place, which likely will take another month or two. However, the decision to name Saab as the preferred bidder after all three shortlisted candidates have made their best and final offers makes it highly unlikely that the decision to hand it to Saab would be overturned at the last moment.

The contract is a significant one from a Finnish point of view, with the total value likely to be in the range of hundreds of millions of Euros. Despite missing out on replacing the outgoing RBS 15SF (MTO 85M) anti-ship missiles, this further cements the position of Saab as the key systems supplier of the Finnish Navy. Not only will Pohjanmaa- and both FAC-classes have the 9LV once the Hamina-class have undergone their MLU, a number of sensors and other weapons have also been acquired from Saab. These include CEROS fire-control sensors, TP 47 light-weight torpedoes, and the Trackfire RWS which will be found on most Finnish surface combatants as well as auxiliaries.

IMG_6938 GIMP
Jonas Widerström, Saab’s Naval Sales Director Finland, with one of the Multi-Function Consoles which form a key part of the user interface of the 9LV. Source: Own picture

Today’s press release doesn’t further elaborate on why Saab was chosen, but it is highly likely that the reasons mentioned by Saab when they discussed the offer last year eventually where the ones to seal the deal: Price, robustness, a “comprehensive industrial participation package”, “pretty advanced” capabilities when it comes to converting between national and international data links, and having a harmonised C3I system with both the Hamina-class as well as with the Swedish ships of the Swedish-Finnish Naval Task Group (SFNTG).

Saab will now get to integrate the main weapons systems, the Gabriel SSM, ESSM SAM, Bofors 57 mm guns, and the TP 47, as well as all the sensors and data links into a single working platform. Several of the sensors are still unconfirmed, but in accordance with earlier information it seems highly likely that the key sensor will be Saab’s Sea Giraffe 4A FF. This will be part of the SLIM (Saab Integrated Lightweight Mast), which will also feature ESSM equipment and a single rotating Sea Giraffe 1X. Operating on the X-band, the 1X has shorter range but better resolution compared to the S-band of the 4A. The SLIM will be delivered as a complete subassembly to the yard, which can then install it as a module. It is also likely that the vessels will be fitted with the Kongsberg ST2400 towed array for operations in the ASW-role*, as well as the Saab TactiCall integrated communications system.

The final look of the vessels is slowly taking shape, with only a few key pieces still unconfirmed. These include the length of the Mk 41 VLS tubes, though it seems likely they will be of the full ‘Strike Length’-versions, as well as the secondary gun system responsible for close defence against airborne threats and munitions as well as against smaller surface targets. It is probable that by the time we celebrate Navy Day in early July these last pieces of the puzzle will have been confirmed, and the building of the vessels can finally begin in earnest.

*I am working in another, unrelated, division at Kongsberg Maritime. However, all information regarding the ST2400 I have is from open sources. The guess is purely based on the fact that the ST2400 has been ordered for the Hamina MLU, and so far most new systems acquired for the Hamina MLU has also found their way to the Pohjanmaa-class.

Schrödinger’s Griffin

The JAS 39E Gripen is something of a paradox. It’s at the same time both a mature concept dating back to the late 80’s and a fighter so new the first deliveries aren’t planned until next year. The program is still reportedly on schedule while the first flight was pushed back and there are persistent rumours that the following 39-9 and 39-10 have been delayed due to the recent upgrades. While the two-seat Foxtrot-version is developed by Brazil for the needs of the Brazilian Air Force, any Finnish order for conversion trainers would be assembled at the normal production line in Sweden. And despite all of this, the Echo is still happily continuing as one of the favourites for the HX-program.

Grip 290
JAS 39C (cn 39290) demonstrating one of the key issues with the Charlie-generation of the Gripen – the limited number of stations available to weapons and external stores such as fuel tanks and sensors. This is being adressed with an increase in the number of hardpoints for the Echo-generation. Source: Own picture

The answer to the latest paradox is multi-facetted. One of the key factors is size. The small(ish) Gripen is the sole single-engined fighter in the HX-competition besides the F-35, and small size means fewer parts, lower fuel consumption, and overall lower acquisition and operating costs (ceteris paribus). Saab is confident that this will play a major part in the equation, or as country manager Magnus Skogberg puts it:

We can deliver with margin within 7 to 10 billion Euros

But as we have discussed earlier, with a set budget and a cap on the number of aircrafts, the interesting part is how much combat capability can be delivered within these two? On paper, this does seem to favour bigger and more capable aircraft, but that would be to overlook how tight the 10 billion Euro cap actually is as well as overlooking a number of the Gripen’s stronger cards.

8e4fb29f5ba82504_800x800ar
39-8, the first ‘Echo’, flies with IRIS-T wingtip mounted missiles and several weapons pylons. Picture courtesy of Saab.

The whole concept behind the Gripen, the earlier A/B/C/D as well as the current E/F versions, is operations against a numerically superior peer-level enemy. This puts significant demands upon the ability to get the most out of every single aircraft, from the ground up. To begin with the aircrafts get a large number of flight hours during combat operations, thanks to the quick turnaround time. This is something the Swedish jets demonstrated to their Finnish hosts at exercise Ruska 2017 last autumn. The same exercise also demonstrated the ability of the Gripen to seamlessly fit into the Finnish air combat system. This is no surprise, as the development of the Finnish and Swedish air combat doctrines have been heavily influenced by each other, including dispersed basing and operations with limited support equipment.

At the other end of the spectrum, Saab has put significant works into making the OODA-loop as short as possible. The key issue here is to make the man-machine-interface as effective as possible, providing the (outnumbered) pilot with the information he or she needs in a way that he or she can quickly process it and make the necessary split-second decisions. This is made possible by the completely fused sensor and sensor control system, which includes not only the Selex ES-05 Raven AESA radar, but also an IRST (the smaller sister of the Typhoon’s PIRATE), the passive electronic warfare sensors, as well as datalinks. The combination of IRST and passive EW sensors is of special interest, as they are both Saab’s answer regarding how to counter stealth fighters as well as the key to executing completely ‘silent’ intercepts.

J35J wings
Not too long ago, the fighter that made up half the Finnish Air Force was built by Saab. These kinds of traditions have a tendency to echo. Note that the Draken was a pioneer in IRST-sensors as well. Source: Own picture

As Skogberg briefs the gathered Finnish media at the Finnish Air Force 100 anniversary air show, he is interrupted by a roar as J 35J Draken ‘Johan 56‘ of the Swedish Air Force Historical Flight does it’s practice run, a physical reminder that less than 20 years ago it was a Saab-built fighter that defended the Finnish skies. This obviously points to another key aspect. Back in the Cold War Sweden stored surplus Draken-versions, ready to send them over to Finland in case of conflict (Finland was bound by the Paris Peace Treaty to have a cap on the number of fighters operated, but had instead trained a surplus number of pilots). While the same exact procedure is unlikely to be relevant today, Sweden is still arguably Finland’s closest partner, and having fighters which can use the exactly same munitions and support equipment would be a significant benefit.

Försvarsmakten
Försvarsmakten, the Swedish Defence Forces, is the single most important partner of the Finnish Defence Forces. This simple fact is bound to be reflected both in the national security evaluation, but also when looking into what kind of operational capabilities can be expected from the 39E Gripen in HX. Source: Own picture

Crucially, much of this fits right into the Memorandum of Understanding signed by the Finnish and Swedish ministers of defence earlier this month. The MoU outlines that Finland and Sweden “will achieve increased operational effect through combined use of resources, [and] increased interoperability” in a “defence cooperation [that] covers peace, crises and war.” This is all based on the fact that “the ability to act jointly also raises the threshold against incidents and armed attacks”.

However, when the Finnish Air Force is looking for an operational fighter to fill the gap left by the Hornets the question is if the Swedish fighter is just a bit too far into the future. The first deliveries to FMV, the Swedish Defence Material Administration, will take place next year. However, the first deliveries from FMV to the Swedish Air Force are only set for 2021, the year of the HX decision, where they will reach full operational capability only in 2025, the year of the first HX deliveries. Saab insists that the Echo is a very mature and proven system, and it is true that FMV will handle parts of the test and evaluation which in other nations would be part of the air force’s T&E program. Still, there’s little room for error if the Finnish Air Force is to be able to evaluate any kind of operational configuration of the Echo. Saab is trusting that they will be able to do this thanks to the complete decoupling of hardware and software which they have made. So far it seems to be working, and Saab’s stated goal is to push upgrades for the operational Echo at even shorter intervals (and hence smaller in scope) compared to Charlie’s three-year cycles.

As far as we understand, no-one is doing avionics architecture as we are

Torped 47 – Steel fishes back into Finnish service

On the evening of 18 November 1942, three Finnish motor torpedo boats entered the Soviet port at Moschny Island (Fi. Lavansaari) and fired four torpedoes which sank the Soviet 1,700 ton gun boat Krasnoye Znamya at its moorings, after which they sped away unscathed. The daring raid is the high point in the history of Finnish torpedoes, and five years later torpedoes were effectively banned from Finnish use with the Paris Peace Treaty.

Like the case with guided missiles, the ban would in the end give way to Soviet weapon exports. In this case torpedoes reappeared on the (official) Finnish TOE with the acquisition of two Project 50 ‘Gornostay’ (NATO-designation ‘Riga’-class) frigates in the mid-1960’s, both of which sported heavy torpedoes (533 mm). The local renaissance of the torpedo was however cut short by the fact that the ships themselves weren’t overly successful, and importantly they were too manpower intensive for the small Finnish Navy. In the end, they were retired in 1979 and 1985 respectively.

Lightweight torpedo - image 2.jpg
Saab’s render of the NLWT in full ‘warpaint’. Picture courtesy of Saab

Now, while the heavy torpedo slowly gave way to the anti-ship missile as the premier weapon in ship-to-ship combat, the lightweight torpedo became the anti-submarine weapon of choice for most navies in the world. In Finland things were a bit different, mainly because of the shallow and constrained waters which dominate the northern shore of the Gulf of Finland. However, things slowly started to change with the introduction of ever more capable diesel-electric submarines and different kinds of midget submarines in the Russian Baltic Fleet. While running towards the enemy at speed and throwing depth charges might have worked against a Project 641 ‘Foxtrot’-class, it was very doubtful whether it would against more modern designs such as the current Project 877/636 ‘Kilo’ or the upcoming Project 677 ‘Lada’.

With these developments under the surface in combination with the Finnish Navy shifting more and more priority from defence against enemy amphibious landings/naval movements to protection of merchant shipping, it was clear that the ASW-capability needed a boost. There simply needed to be more ships capable of performing ASW, and they needed a longer reach to avoid being sunk outside of the range of their own ASW-weapons. Enter the second reintroduction of torpedoes into Finnish service, with the decision that the Hamina-class and the upcoming Pohjanmaa-class (Squadron 2020) would both get light torpedoes.

OK IMG_6968 Gimped.JPG
Håkan Ekström, Saab’s sales director for underwater systems. Source: Own picture

The choice of torpedoes was revealed early January this year, with the announcement that Saab’s new lightweight torpedo (NLWT) had been chosen. As a matter of fact, the torpedo is so new that it hasn’t got a company name yet. “There is a name in the works”, Saab’s sales director for underwater systems Håkan Ekström discloses. In the meantime, the Swedish Defence Forces has already named the new weapon Torped 47 (sans-o, as that’s how the word is written in Swedish).

That Finland would opt for the NLWT was rather unsurprising, considering that it is highly optimised for the kind of littoral environment that any Finnish submarine hunt would take place in. Compared to ‘blue waters’ (open seas), looking for submarines is vastly different in the Baltic Sea. Detection ranges, and combat ranges for that matter, can easily be much greater than the depth, leaving the combat taking place in what the product manager for torpedoes, Thomas Petersson, described as a “Thin slice of water”. This causes issues for active sonars, as in the oceans anything spotted by them is usually either a submarine or some kind of sealife. In the Baltic Sea, most echoes are simply coming from the seabed, leading to a more difficult discrimination problem. The water also has some interesting behaviors, part of which comes from the many rivers flowing into the sea. These bring fresh water of various temperatures and significant amounts of sediments into the sea, leading to sound waves in some cases experiencing refraction in two directions (see this short and nice primer on how different temperatures messes up submarine hunting). In short together with the cluttered seabed detection becomes difficult, leading to relatively short engagement ranges.

Saab’s answer is the NLWT, which sports a number of niche features which combine to address the problems of subhunting in littoral waters. To begin with the torpedo is wire-guided, meaning that the operator aboard the ship can easily control the torpedo throughout its course. This also allows it to be used like a forward-deployed sensor, in that the operator can use its active sonar to look for targets, at different depths, as the torpedo is happily moving towards the suspected submarine location. The torpedo also has a very low slowest possible speed, allowing it to run very silently, further increasing the effectiveness of its sonars (the torpedo can be fired in both active and passive modes). One crucial difference is that the active sonar is operating at a somewhat higher frequency than usual for light torpedoes, giving it better resolution on the sonar picture as a tradeoff for somewhat shorter viewing range. The torpedo also has a quick launch sequence and rapidly goes into stable running, to ensure that it doesn’t touch the bottom and can handle the earlier mentioned short engagement ranges efficiently.

IMG_2604
The earlier Torped 45 being fired of a ship during an ASW exercise. Note the two unshrouded screws, the most obvious external difference compared to the NLWT. Source: Jimmie Adamsson/Försvarsmakten

For the technical specifications, NLWT is made out of aluminium, and sports a pump jet with a single rotating impeller and a stator in place of the earlier Torped 45’s two unshrouded coaxial counter-rotating screws. The battery has also been upgraded, with lithium iron phosphate (LiFePO4) batteries replacing the earlier silver-oxide. This allows the torpedo to stay launch-ready for longer times in the launch tube, which also functions as the plug-and-play storage tube. The launch tube also include pressurised air to eject the torpedo and a spool of the same wire as is found inside the torpedo. If the torpedo moves, the torpedo spools out wire, and if the vessel moves the launch tube spools out wire. This ensures that the wire stays stationary in the water after the first few meters of the torpedo run, making sure that it doesn’t tangle or break. In the case of a wire break the torpedo will either abort or continue in fire-and-forget mode, depending on the mode chosen before launch. After a torpedo has been launched, the whole empty launch tube is switched out to a new tube with a launch ready torpedo inside it. This switch takes around 15-30 minutes for a trained crew and doesn’t require any specific equipment other than a suitable crane to handle the load. As such, it could conceivably be handled at sea (sea state allowing). The used launch tube is then sent back to a naval base to be reloaded. The direct drive DC-motor together with the new batteries provide a range measured in “tens of kilometers”, the exact number being both classified and highly dependent upon the speed of the torpedo.

Lightweight torpedo - image 3
The first prototype of the NLWT during tests at Motala. Note orange dummy warhead, wire being retrieved in the bucket aft of the torpedo, and the grey disc on top of the torpedo immediately behind the warhead which marks the location of the proximity fuse. Picture courtesy of Saab

The active sensor provides a detailed enough picture that it can measure the length of the target, and any major features such as the conning tower can be made out. During the run the torpedo maps all return echoes, run validity checks, and reports on valid targets. If allowed it will then intercept the closest valid target inside the search box, and in case of a miss it will re-acquire for another attack. The seeker has been used successfully during live-fire exercises against targets the size of midget submarines, and Saab is confident that it can handle these kinds of targets as well as regular submarines. An interesting feature is the anti-ship capability, and though the small warhead (Saab declines to give the size, but notes that most light torpedoes carry a warhead weighing “about 50 kilograms”) won’t sink any major surface units, it does punch above its weight in that it has a dedicated ASuW-attack mode going beneath the vessel and using an upwards-looking proximity fuse to detonate under the keel. The combined effect of the gas-bubble which removes the water that carries that part of the vessel combined with the impact of water rushing back to fill the hole is enough to literally break ships in two when employed by larger torpedoes, and while the NLWT won’t repeat that, it will most likely send any corvette limping back to base with the hull distorted and propulsion shafts out of alignment.

Part of this performance comes from the Swedish requirement to be able to use the torpedo from both surface ships, submarines, coastal launchers, and aircrafts/helicopters. For the submarines, the light torpedo plays an important role as a self-defence weapon, as well as for hunting other submarines. For the Hamina-class, they will sport a single fixed twin launcher on the rear deck, allowing enough space for the RIB-launch to remain in its current position. Looking at the future, the contract with Saab also include an option for the four Pohjanmaa-class corvettes, and everything points towards this option being exercised within the next year or so when the acquisition of weapons for the corvette program starts to take place.

The current Finnish contract for the torpedoes include the systems for the Hamina-class and an undisclosed number of torpedoes, as well as training at the torpedo research and development center in Motala. This is also where we are shown the first prototype of the weapon, which is just about to finish its part of the development program. The production of the units themselves, and prototype number two which is currently in production, takes place in Linköping. Deliveries to both Finland and Sweden will start in 2023, and FNS Tornio, the first of the Hamina-class to undergo MLU, will be ready to go to sea with the launchers fitted already next year. Notable is that the Swedish Defence Materiel Administration, FMV, is closely involved in the project and is the launch customer that has contracted Saab to develop a new torpedo. However, the Finnish contract with Saab does not include any research and developments, but is purely for production and supply (including torpedoes, hardware needed for their operation, documentation, and training). However, at the same time the Finnish Defence Forces Logistics Command, PVLOGL, has signed an agreement with the FMV regarding cooperation and loans of Torped 45 to cover the period 2019 to 2023 when the Finnish Navy will have torpedo capable ships but no torpedoes.

‘Borrowing’ something that is literally worth millions of Euros sounded a bit suspicious to me, so I decided to contact FMV to confirm that it wasn’t just a case of Saab spelling ‘leasing’ wrong. However, FMV confirmed that it is indeed the case that the Finnish Defence Forces gets to borrow a non-disclosed number of torpedoes for free, as long as they are used and maintained according to official documentation. The aim of this agreement is that Finland will be able to operate with the Torped 45 aboard FNS Tornio already next autumn. Part of why this generosity is bestowed upon the Finnish Navy is no doubt that torpedoes occupy a rather unique role amongst modern munitions in that after launch they can be retrieved (the training warhead sports a flotation device in the form a inflatable ‘balloon’), and after the wire has been respooled and the battery recharged they are good to go again. As such, this is quite different compared to e.g. borrowing artillery rounds.

However, another angle is without doubt the value for Sweden of having Finland as an operator of the same system. Not only will this offer benefits when jointly performing ASW missions as part of the Swedish-Finnish Naval Task Group (the SFNTG), but a second cooperation deal signed at the same time between FMV and PVLOGL concern the future of the NLWT. Under this the two nations will cooperate around the acquisition and continued development of the torpedo system. By creating these kinds of synergies the costs for operating and keeping the system up to date will hopefully be lower for both users, and the agreement also open up the doors for increased cooperation around the ASW-mission as a whole.

The first draft of the text and pictures, with the exception of those parts based on information given by FMV, has been provided to Saab for screening to ensure that no classified, export controlled, or company confidential information is included.

RBS15 – on the road to the Next Generation

“Psychedelic” is the word I hear someone standing next to me use to describe the room. I agree. We are standing inside what is roughly a 13 m long cube, with all the surfaces being covered with soft blue spikes of different sizes. The room is completely void of echoes, and they say that if you stand here alone, you will eventually hear your heart beating. Loudly. The only objects standing out is a large frame mounted halfway up one wall, and a pattern of blank discs mounted opposite the frame, these being the flight motion simulator and the antenna wall respectively.  We are in the anechoic chamber at ELSI, and I almost expect GLaDOS to start talking to us.

ELSI, or the Electrical Warfare Simulator, is at the hearth of Saab’s anti-ship missile program. The seeker-head of the RBS15 missile is mounted on the flight motion simulator, which moves the seeker in 3-axises as it ‘flies’. On the other end of the room the antennas sends out signals corresponding to what the seeker would see at any given moment during its course. This includes not only target signatures, environmental effects, and countermeasures in the form of false targets and active jammers. All this, coupled with the seekers simulated position and real-world direction, are then used to create the model, which is fed to the antenna wall’s signal generator which creates artificial radar returns for the seeker head. As noted, it is very much a case of the actual hardware being in the loop during testing.

OK IMG_6980 Gimped
RBS15, sporting a 200 kilogram warhead to dissuade enemy ships from getting within 200 kilometers of your waters. Source: Own picture

The story of ELSI goes back to the early 90’s, when the board decided upon the investment, partly to ensure that Saab would be able to expand their share of the export market in an age of shrinking defence budgets. 1994 the site was running its first tests, and four years later it was operating at the desired level, a host of teething problems having been fixed.

Finland is no stranger to the RBS15, having operated the first generation of the missile from ship and shorebased batteries under the local designation MTO-85 since the late eighties. As such, a Finnish delegation visited ELSI early on in 1999, with the latest Finnish threat pictures. The purpose was to run a comprehensive round of tests with the MTO-85 seeker, which then provided the basis for an upgrade program launched at Saab. The upgraded seeker was then run through the same set of tests the following year. The tests can’t have gone too bad, as two years later the upgraded RBS15 SFIII, a customised RBS15 MkII, was introduced in Finnish service as the MTO 85M.

Now the RBS15 is a hot topic again for Finland. The anti-ship missile is one of the candidates for the PTO2020-program, the current acquisition to replace the MTO 85M on the Hamina-class following their ongoing MLU and in the truckmounted batteries, as well as becoming the main surface-to-surface weapon for the new Pohjanmaa-class corvettes (Squadron 2020). And Saab is confident that the RBS15 will be a prime candidate this time as well.

Saab has two distinct versions on the table. Noting that the baseline version was nearing the end of its life, Saab embarked on an ambitious upgrade program. While the step from MkI to MkII was an upgrade, the Mk3 was a radical redesign resulting in what was basically a completely new missile. Following a four-year test program it was adopted by the German Navy, and shortly after that by the Poles. The Swedish Navy is still soldiering on with the MkII, and would have been happy to adopt the Mk3. However, the Swedish Air Force had other thoughts, and had a requirement for the weapon to be lighter to allow four missiles to be carried simultaneously by the upcoming 39E Gripen. The result was the RBS15 ‘Next Generation’ (still lacking an official designation, though Mk4 wouldn’t come as a surprise), which is an upgraded Mk3 with a lighter launch weight, longer range, and generally improved performance. The weapon is contracted for introduction into Swedish service for both the Navy and the Air Force during the next decade, and Saab doesn’t mince words: “It is the most capable and advanced anti-ship missile on the market”, as was explained to us during a briefing.

OK IMG_6973 Gimped
The new launch tubes for the RBS15 Mk3 are seemingly of a more complex shape than the older ones, but under the surface ease of manufacture actually means they are cheaper. Source: Own picture

The new launchers are a chapter for themselves, with the original box-like launcher having been replaced by octagonal tubes. The reason behind this is cost-savings, as the original box held the missile tilted 45° to one side, meaning that the railings holding the missile inside the box have very demanding tolerances. The newer launch tube instead holds the missile level, which is somewhat more forgiving on the structures. But it in turn leads to new questions. “The Visby-class will fit the NG, but we have already cut square holes in the side for the MkII, so in that case we will use the old launcher,” a technical sales support engineer explained. “The missile itself doesn’t really care, it can handle both positions.”

OK IMG_6981 Gimped
The humble MSU (Missile switching unit) is the only major piece of hardware except the launch container that is needed aboard a vessel to be able to fire RBS15. Source: Own picture

What then is so special about the RBS15? From a Finnish standpoint, the Baltic Sea as the design environment of choice is interesting. The often poor weather combined with a cluttered archipelago and lots of civilian traffic makes for a challenging battlefield, and Saab is one of very few companies designing their anti-ship missiles from the outset for littoral waters as opposed to the open sea. This is also where ELSI comes into play. allowing for advanced simulations of the performance of the seeker, something which plays a key role in evaluating parameters such as ECCM and target discrimination. The weapon is also capable of performing the land-attack role against ‘soft’ targets, though it is not optimised for the role in the same way as ‘true’ land-attack cruise missiles.

The ships we are firing against are not that keen on being hit.

The flight path of the missile is guided through a number of pre-set 3D waypoints, and the missile then navigates using both GPS and inertial navigation to make sure it hits all waypoints on time. Timing is key for features such as simultaneous time-on-target, a default feature for the RBS15, and as such the missile will throttle up and down in flight as needed to hit all waypoints on the exact time given. The exact height of the sea-skimming part of the trajectory also varies according to sea state, with larger waves naturally forcing the missile to fly at higher altitude. And in case the missile misses its target, it will swing around and do a reattack. If no target is found at all, it will eventually head off to a pre-set destruction point, which can be altered by the operator to make sure the missile doesn’t fly off and self-destruct over the nearest town.

Next Generation Anti-Ship Missile System.jpg
Saab’s technology demonstrator 39-7 displaying the capability to carry two RBS15 under each wing, giving a four-ship of Gripen E an almost unrivalled firepower against enemy shipping. A full salvo will be devastating against enemy warships, but also comes at a hefty price. Picture courtesy of Saab Ab

For PTO2020, Saab hasn’t offered a specific variant, but instead opened the shop and described the Mk3 available today and the NG available tomorrow. The systems will also be interoperable, with NG launchers able to fire Mk3 and Mk3 launchers able (after a software update) to launch NG missiles. Customisation, as has been the case with the earlier Finnish versions, is also an option, but Saab notes that less and less countries are willing to pay the premium of having a customised missile. From a Finnish perspective, the supply chain is interesting. Diehl in Germany handles final assembly, with Saab building many major subassemblies and handling much of the development work and testing in Linköping. However, a new location on the map is Saab’s brand new technology centre, the STC, in Tampere, which is heavily involved in the electronic warfare side of the technology for the RBS15 NG.

The first draft of the text and pictures has been provided to Saab for screening to ensure that no classified, export controlled, or company confidential information is included.