HX Challenge pt. 4: More of Everything

Unfortunately, Finnish daily Aamulehti which so far has openly shared recordings of the main press event at the HX Challenge media events has decided to put these behind a paywall. As such, this post is based upon secondary sources (i.e. published articles). Sorry for the inconvenience, but these are the unfortunate facts. Next week we will be back to primary sources (as I will attend the Boeing briefing in person).

From the outset, the F-35 has been the aircraft to beat in HX. It isn’t impossible that it will end up beaten, but the string of successes throughout the world (marred only by the highly politicised German failure to be allowed to bid) and unique selling points makes it the gold standard in Western fighter design at the moment. As such, anyone wishing to better Lockheed Martin’s stealth fighter will have to put in some serious effort to show why their bid is better for the Finnish Defence Forces’ concept of operations.

F-35 at Pirkkala FinAF FB Joni Malkamäki
The two F-35A’s from that eventually came over from 308th FS were described as being amongst the latest jets in use at Luke AFB, which should mean that they are of the Block 3F, i.e. ready for combat use. Source: Finnish Air Force FB/Joni Malkamäki

At least from the outside, that task hasn’t become any easier from the start of the competition. While Lockheed Martin might have seemed a bit too certain of success in the early days of the competition, this week’s media event has shown that they are listening to the customer and not just offering a copy-paste version of offers made to other countries.

Few doubt the combat capability of the F-35A. The advanced sensor suite and fusion coupled with low-observability features make it a formidable foe for anyone, and the large number of aircraft on order makes it future proof in a way none of the other contenders are. The biggest questions has been surrounding security of supply, sovereignty of data, and industrial cooperation. It is important to note that this does not mean that the Air Force is ready to buy the second best just to ensure that they will get these secondary benefits, but rather that the Air Force has judged these issues to be of crucial importance in allowing a fighter to be combat capable. As has been repeated throughout the last few years: the bids are only ranked on their overall combat capability as part of the overall Finnish defence solution.

And there’s plenty of combat capability in Lockheed Martin’s offer. While the contenders aren’t allowed to comment on the number of aircraft offered, Steve Sheehy, Lockheed Martin’s Director of Sustainment Strategies and Campaigns, appeared to accidentally disclose that it would be a case of 1-to-1 replacement of the Hornets.

“The requirement is 64, we are at 64”*

This was later walked back to the more politically acceptable line of “‘If the requirement is for 64, we are at 64.’ Lockheed Martin will not comment publicly on the number of fighter jets in its response to the call for tenders.” Considering the fact that we have known since last autumn that 64 isn’t in fact a set requirement any longer, my personal belief is that the offer is for 64 aircraft. Make of it what you will, but a 64-ship strong F-35A force would be an impressive one by any measure. It would conceivably make Finland the seventh largest operator of the F-35 (all marks included), leaving behind Tier 2 and 3 contributors such as the Netherlands, Norway, and Denmark, as well as making the Finnish Air Force the third largest European operator after the UK and Italy (both of which will likely be operating joint F-35A/B fleets). While this might seem like a bold step, it should be remembered that when Finland bought the F/A-18C Hornet it was an order on a similar scale (the early 90’s seeing the AIM-120 equipped Hornet second only to the F-15C Eagle in the air-to-air role). As long as the aircraft can fit within the price tag, the Finnish Air Force is unlikely to shy away from capability. In fact, a serious F-35A order does hold deterrence value in and of itself, as it would highlight the determination to invest in a credible high-end defence as well as the close bilateral defence cooperation with the US.

Perhaps the most interesting part of the press release was the part on how Lockheed Martin plans to ensure security of supply and industrial cooperation.

Edited 17/02/2020 22:50 GMT+2

Originally it was reported that not only the aircraft, but the F135 engine as well would reportedly be produced in-country.*

This would have represented a significant development in an area that has traditionally been viewed as a weak part of the Lockheed Martin offer, and would be a significant step away from the current production chain which is responsible for pushing the price of the aircraft down to the extent that 64 aircraft could fit inside the Finnish budget. Such an offer would by it’s very nature include a rather large amount of tech transfer, and ensure Finnish industrial know-how stays up to date when it comes to maintaining and overhauling the aircraft, and would solve what otherwise might represent a significant issue in meeting the 30% industrial cooperation target.

However, upon contacting Lockheed Martin, it became clear that this was a case of serious misreporting. Upon a direct question, John Neilson, Director of International Communications for Europe and Israel, stated in no uncertain terms that no mention was made of final assembly of the F-35 aircraft or engine manufacturing. When asked what the industrial participation may look like, I received the following quote:

“Industrial participation forms an important element of our F-35 proposal for Finland but at this stage of the process, for reasons of competitive sensitivity, it would be inappropriate for is to give any further information and wrong to speculate on the details.”

End of edit.

Perhaps a harder thing swallow for the Finnish Air Force was the scheme drawn up for the management of spare parts. This would include peacetime stocks stored in-country for normal operations, with a different set for times of heightened tensions being stored internationally and transferred to Finland when needed. While this kind of centralised spare hubs likely play a significant role in ensuring a low operating cost, not having complete control over the necessary wartime spares will likely be a no-go. However, it is important to remember that this second offer currently being referenced by Lockheed Martin isn’t the same as their best and final offer, which will come only after the approximately six months of negotiations with the Finnish MoD and Defence Forces that are now starting. Lockheed Martin also acknowledges that the sizes of both the in-country and the international stocks aren’t locked, but are currently being discussed. It does however feel that this is one area where the company’s normal ‘tailored for NATO’-options still clashes with the Finnish thinking surrounding wartime operations.

The stealth capability is the defining feature that sets the aircraft apart from the rest of the competition, and while much has been said about the limitations of stealth in the form the word applies to the F-35, you are still better off with a lower radar cross-section in the X-band than with a larger one (which is the aspect where the difference in observability is the largest). The same goes for the carriage of external stores. Granted the RCS will go up compared to when the F-35 carries only internal weapons, but in all likelihood** an F-35 with external stores will still exhibit a lower RCS than competing fighters with external stores (even if the difference is narrower). And while many countries are investing significant resources in detecting VLO aircraft in general and the F-35 in particular, for the immediate future it will likely remain easier to complete the kill chain against a traditional aircraft than against a VLO one (think of it as armour in ground combat – there are weapons and munitions able to defeat armoured vehicles, but still most soldiers prefer riding into combat under armour than in soft-skinned vehicles). The question mark here is whether some of the contenders can mitigate this difference either through the use of different concepts of operations and/or heavy reliance on electronic warfare? It is a tall order, especially considering that the F-35 isn’t exactly lacking in EW-capabilities either, but it isn’t impossible. What is impossible is discerning that difference in EW-capability based purely on open sources, so we will just have to wait and see when it comes to the final decision in 2021.

35740456170_57fc23a502_k
F-35A during tests with four externally mounted GBU-31 JDAM. One benefit of the F-35A from a Finnish point of view would be the ability to carry over numerous weapons, such as the JDAM-family and the air-to-air missiles, from the current inventory and into the HX-era. Picture courtesy of Lockheed Martin/photo by Darin Russell

It needs to be emphasised just how far beyond the competition the F-35 is when it comes to future proofing the production of the aircraft. The numbers ordered dwarf those of any of the competition, with the F-35A alone having over 2,300 aircraft on order or in the plans of the current customers. This is the only aircraft of the five that beyond any shadow of a doubt will not only be kept in operation but crucially kept up to date outside of Finland well beyond 2060. The need for having other operators also towards the end of the career of HX has been emphasised by those involved in the procurement process several times, and here the F-35 really shines.

The maturity of the aircraft has been questioned, especially as it seems to be followed by a string of bad news. However, it should be noted that the US has a somewhat unique reporting system, which means that many of the minor setbacks (such as the recent issues with the 25 mm gun) are reported in a more open fashion than would be case in most other countries. Colonel Keränen also noted in an interview that if the aircraft is mature enough for Norway to declare IOC, it’s mature enough for us as well. Notable is that the huge number of aircraft flying, 240,000+ flight hours to date, also allow for a rapid pace of development, including the tracking down of any teething troubles at an fast rate.

The GBU-53/B SDB II will be a key weapon of the F-35A Block 4

Like most of the competition, the aircraft being demonstrated doesn’t fully correspond to what would be delivered in five years time. The current F-35A Block 3F standard will give way to the Block 4, which will bring a serious step-up in capability. Most visible are the inclusion of new weapons, such as the JSM anti-ship missile, the GBU-53/B Small-Diameter Bomb II, and the ASRAAM and Meteor for UK use. However, many important changes are simultaneously taking place inside the airframe, which will play a perhaps even larger role than individual weapons when it comes to ensuring that the F-35A of 2025 will be more combat capable, both in absolute and relative terms, than the aircraft now evaluated. Still, it should be pointed out that the inclusion of the GBU-53/B will add a serious anti-vehicle capability to the F-35A, the question then being if the Finnish Air Force in wartime could spare any aircraft for the mission or if all are tied up in the air-to-air role?

Much still remains open. Absent from the reporting from the press event was the promises of complete ownership over the mission data that was repeated by all European manufacturers, and the flight hour costs and changes to infrastructure needed are somewhat open. The F-35 still remain the aircraft to beat though, and the competition have their work cut out for them.

* F-35:n valmistaja lupaa Suomelle hävittäjän tuotantoa – “Emme kerro, kuinka häive rakennetaan, mutta kerromme miten se ylläpidetään” 

** I can in theory envision a scenario where some kind of strange reflector phenomenon would increase the RCS with external stores ridiculously much and make it larger than some of the other contenders, but that is more along the lines of technical possibilities than anything I would call likely

HX Challenge pt. 3: Head start for Future Growth

The snow finally arrived to central Finland this week, and with it came the last eurocanard to take part in HX Challenge. 39-10, the latest of the pre-production JAS 39E Gripens, touched down on Tampere-Pirkkala airport in a landscape that looked decidedly different compared to the weeks before when the Eurofighter and the Rafale had been visiting.

IMG_1551
The 39-10 today at Tampere-Pirkkala AFB, carrying not only the wingtip IRIS-T missiles, but also Meteor very-long range air-to-air missiles and the new EAJP jammer pod. Source: Own picture

Someone that didn’t show up was anyone working at the Swedish embassy in Helsinki, a marked difference from the media days of the other two eurocanards. The reason was simple: “I don’t think anyone doubts that Finland and Sweden has a close bilateral cooperation.” As such the focus was placed on the aircraft instead of the strategic partnership, though the offer was described as being prepared in close cooperation with both the Swedish Air Force and the Swedish Defence Materiel Administration (FMV). This is also crucial, as besides the limited Brazilian order Sweden is so far the only major buyer of the 39E-version. Any Finnish order will rest on how reliable the Swedish long-term (i.e. into the 2060’s) commitment to the 39E as a platform is judged to be.

Saab has decidedly taken the Air Force at their word when they said they want the best capability that can fit inside the budget, with an offer that include not only the 39E/F Gripen, but also the GlobalEye airborne early warning and control platform. As reported last summer the idea behind is that not only does it improve the overall combat capability of the Finnish Air Force, but it also saves the fighter fleet by off-loading part of the missions that would otherwise have been flown by the HX fighters. This not only saves money and airframes, but crucially helps in ensuring a high-level of readiness for the fighter fleet. Anders Carp, head of Saab’s Surveillance business unit explained that they are happy to be able to offer HX “a true force multiplier”, and that he expects the Finnish Air Force to be happy about it as well. Unfortunately, the poker faces of the FinAF colonels present held, so we have to wait until 2021 to see if that is a correct conclusion.

83651796_644597526277116_2971473102262763520_n
Colonel Keränen, head of the HX Programme, outlining how the programme is continuing. Source: Own picture

However, colonel Keränen in his briefing prior to Saab’s presentation did note that ISTAR is a capability that will be required from the HX-package, and that it is a new capability compared to the current Hornet-fleet. This is interesting in that it shows that the capability sought is something more than what the Hornet currently offer by flying around with their AN/APG-73 radars and Litening-targeting pods. Here the GlobalEye really shines, as it not only provides a superior air-to-air picture (especially against targets operating at low heights) compared to the current Finnish ground-based network, but also provide air-to-surface radar pictures and signal intelligence from passive sensors. The range of sensors, both passive EW-sensors and possible EO/IR-sensors, can be tailored towards the specifications of the customer. However, in general it could be noted that the aircraft would not only be a valuable sensor in wartime, but would provide a serious benefit in peacetime as well through its ability to gather information far beyond the Finnish borders. As such, it would complement the Air Force’s single C-295 SIGINT-aircraft and the Border Guards’ maritime patrol aircraft.

83251705_1475740725907577_910613481424683008_n
Magnus Skogberg discussing the vast range of the GlobalEye’s sensors, describing the aircraft as a “substantial contribution to the joint operational capabilities of the Finnish Defence Forces”. Source: Own picture

For the Gripen, much of the focus was on the adaptability and electronic warfare side of things. The differentiation of flight critical software, and to some extent hardware as well, from the mission software ensures that it can be upgraded in short increments, avoiding the traditional larger but less frequent MLUs. This is incremental upgrade approach is in effect already now with the current 39C/D-fleet, but the steps would take place in even shorter increments for the 39E/F. “This is unique”, according to Saab, who also pointed out that when the first 39E flew, it did so with a fully certified software. This is also exploited in the form of the 39-7 two-seat aircraft demonstrating the capabilities of the 39F for HX Challenge. The aircraft has a full set of 39E/F mission systems in the backseat, while the flight control software is based on that of the 39C/D.

When faced with the question of how the aircraft that currently is in the test and verification phase, Saab’s view was that since the aircraft is mature enough and will meet the Finnish deadlines with time to spare, it’s recent appearance on the market is simply a benefit. Being the newest of the contenders ensure that the technology is new, and allow the company to take advantage of the latest developments in a way older platforms can’t.

I guess you can make the arguement that the glass is half full.

IMG_1589
The smart fighter – now in Finnish as well. Source: Own picture

For the electronic warfare side, according to Saab the aircraft is providing capabilities close to those of dedicated platforms (read: EA-18G Growler). It is “probably the most advanced EW-suite” carried by a fighter, and provide a full spherical coverage from all directions. This include not only missile approach warning systems, but also internal jammers, chaff/flare dispensers, and so forth. When that isn’t enough, the brand new Electronic Attack Jammer Pod (EAJP) can also be carried, a fully functioning version of which was carried by 39-10 in Tampere. At this point, Saab notes that the 39F does provide superior performance in the electronic warfare (and SEAD/DEAD) role, as the combined suite is powerful enough that to get out the maximum use of it a dedicated systems operator is needed.

83641407_539337750265811_1788411540102184960_n
The EAJP is utilising some of the “same kind of technology” as found in the internal EW systems of 39E, but provide broader frequency ranges and more power when needed. Source: Own picture

While electronic warfare capabilities are difficult to judge based on open sources (we are basically left to trusting that the manufacturers don’t stretch the truth too much) one thing that Saab is sure to have in their favour is the solid presence on the ground in Finland. Saab already has a serious research and development unit in Tampere, the importance of which is set to grow in the coming years thanks to Saab receiving the contract for the combat management system of the Pohjanmaa-class. As such, they are well positioned to reach the stated 30% of contract value in industrial cooperation, the vast majority of which will be directed towards direct cooperation according to the company. The program is very ambitious, and in what is something of a surprise still include not only component manufacturing and final assembly of the aircraft, but of the engines as well. Granted most manufacturers stated that a domestic final assembly line was possible at the outset of the HX programme, but there has been relatively little talk of the topic since, and my impression has been that the interest towards the idea from both the manufacturers and Finnish industry have in fact been lukewarm.

Saab is of a different opinion, and stated that it is the best method of ensuring that Finland actually has the ability to overhaul and maintain the aircraft if the supply lines are cut (which is the requirement of the RFQ). Production of aircraft engines is something that hasn’t taken place in Finland for a long time, but Saab expressed confidence in that Patria’s Linnavuori plant is up to the job. Negotiations are currently ongoing regarding the details of the proposal, and the fact that the Hornet’s F404 engine (on which Patria does qualified maintenance) serve as the basis for the Gripen’s F414GE would probably aid in the transition.

Speaking of transitions, Saab stated that the Gripen would require only “minor adaptations” of the existing infrastructure, and that they foresee a “very smooth integration effort”. A key point was also that no additional noise pollution or environmental impact was expected relative to the legacy-Hornet fleet, an issue that has been highlighted as some other fighter acquisitions has created the need for expensive remodelling of air bases. Here one might note that colonel Keränen also provided some further details on the timeline for the transition. By 2025 the first deliveries are to take place, so that Finnish Air Force personnel can start training on the aircraft. This might take place abroad or in Finland, key point is that the training starts, because by late 2027 the IOC should be declared, with the first HX squadron replacing a Hornet squadron in early 2028. By 2030 the last Hornets leave Finnish service, and HX declare FOC. Notable here is that up until IOC, the training and operating costs of the HX will at least partly come from the 10 Bn Euro additional funding that is allocated for the acquisition. This is due to the fact that normal Hornet operations continue in parallel, and the funds for these will claim the Air Force’s daily operating budget.

But did it fly? No, it didn’t. Was there a perfectly reasonable explanation. Yes, there was.

39-10 didn’t leave Sweden for the first time ever just to impress Finnish (and international) media, but rather to run a verification program. As the Finnish Air Force has stated a number of times, this isn’t about cold weather tests, but verifying the numbers and capabilities provided by the manufacturers in a Finnish setting. The weather conditions did not match any of the planned verification sorties, so the aircraft stayed on the ground. GlobalEye on the other hand had suitable verification flights that could take place, so it appeared in the skies over southern Finland with a mixed Saab/Finnish Air Force crew aboard.

Being a mechanical engineer I saw nothing strange in this. In my earlier work I’ve been present when the weather has been either too good or too bad for planned sea trials. Then the boat stays in the harbour. Not because of the vessel in question isn’t able to go to sea, but because the only thing you would achieve by doing so is burn diesel and kill time. Granted it would have been nice to get to see the aircraft take-off today, but c’est la vie.

However, populists gonna populist. Self-proclaimed defender of Lapland (with friends like these…) Mikko Kärnä in a single tweet manages to 1) describe the purpose of HX Challenge incorrectly, 2) give false (or at least out of context) quote by Saab as to the reason for not flying, and 3) draw faulty conclusions based on those two incorrect statements. Unfortunately, the story about Gripen not being able to fly in snow will likely endure in some fringes of the Finnish political discussion. The influence long-term will likely be minor, but I can already feel how tiresome it will be to hear these talking points making rounds on social media and around coffee tables.

For those interested in whether the Gripen can fly in snow, just ask Antti Virolainen.

HX Challenge pt. 2: Born Joint

When two French fighters landed at Tampere-Pirkkala AFB this week it was the underdog that arrived. While last week’s eurocanard might not be a favourite, the Rafale is an even less likely candidate according to most analysts.

But truth be told it is difficult to tell how much of that perception is based on the lack of an active marketing campaign compared to the rest of the competition. The HX process might have received international praise for its transparency, but that only extends to how the process is being run, and not how the contenders are doing. The current ranking, to the extent there is one at this stage, is well and truly hidden from view.

© Dassault Aviation - A. Pecchi
Rafale B ‘301’, DGA’s and Dassault’s testbed, shown here airborne during earlier tests. The aircraft carries six AASM boosted precision-guided bombs, two Meteor very-long range air-to-air missiles, two MICA IR short-range air-to-air missiles, two large drop tanks, and a Talios targeting and reconnaissance pod. Picture courtesy of © Dassault Aviation – A. Pecchi

The fact that the two Rafales touched down on Pirkkala does however tell us something – Dassault still thinks they have a non-trivial chance of winning. Flight tests are expensive, even a moderate estimate puts the costs for a manufacturer to participate in HX Challenge at something like 1.5 million Euro (it could easily be double that even in direct costs). The fact that Dassault, and the rest, are coming shows they believe the potential benefits to be worth it. This is in stark contrast to most of the recent fighter competitions held in Europe (Denmark, Norway, Belgium, Switzerland…), where roughly half the field have usually dropped out before final offers are sent in. That is a big show of confidence in the fairness of HX, and big kudos to the MoD, LOGL, and the Air Force for that!

Ilmavoimat Rafale Joni Malkamäki Challenge 2
Rafale B ‘301’ (rear) and ‘352’ (front). The reason why Dassault didn’t bring a single-seat C-version was to maximise the number of flight hours they are able to provide to Finnish Air Force personnel, but is also a testimony to how closely related the B and C models are to each other. Note the white bulge behind the blade antenna on ‘301’, likely associated with some F4-standard subsystem, the missile warning sensor on the tailfin (looking like a black dot), and the different coloured covers for the EW sensors on the front of the canard root and on the air intakes. Source: Joni Malkamäki/Ilmavoimat

But back to the French offer. Many of the themes can be recognised from last week. The Rafale would “protect Finland’s integrity”, further strengthen a strong European partnership, and the aircraft is being offered “with the full support of the French government”, to use the words of ambassador Serge Tomas. The aircraft would also be delivered with “no performance restrictions” compared to the French version, and there will be “lots of open books” and technology transfers.

But there were also notable differences in tone when compared to the Eurofighter. The production lines will stay open “for the next decades”, as opposed to the Eurofighter lines that are slowly cooling down. And while the Eurofighter is being sold as the great cooperative project, the French are well-known in security policy circles for their reluctance to trust in others. This is also what they are selling to the Finnish Air Force.

We understand your concept

Those simple words contain a lot. We know you don’t trust in allies to step in and save the day, we understand your wish to be able to go alone if the need arises. The Rafale is the tool that allows you to do so.

French and Finnish national security policy might not have much in common, but Dassault certainly has found the common denominators there are, and they are running with them.

A sobering reminder of just how ready to go alone France is found in the fact that one of the two Rafales currently in Tampere is an operational Rafale B F3R from SPA 81 Lévrier (Greyhound) of EC 2/4 La Fayette. The main mission of the unit is nuclear strike as part of the Forces aériennes stratégiques, the land based air component of France’s completely independent nuclear deterrent. However, like sister unit EC 1/4 Gascogne, they do also fly conventional missions, including operationally over Libya, Mali, and in the Middle East. The F3R is the current standard, and was delivered ahead of schedule, meeting performance targets while staying inside the budget. Any Finnish order would be of the F4 standard that is currently in development, and which has an added focus on connectivity, further developed electronic-warfare capabilities, as well as new weapons. The other Rafale, ‘301’, is a joint-DGA and Dassault testbed, and is equipped with numerous subsystems associated with the F4.

The F4, and the upcoming F5 standard, will also allow the Rafale to remain a key part of the FCAS-system, ensuring that the Rafale stays in French service well into 2060’s*.

Ilmavoimat Rafale Joni Malkamäki Challenge
Rafale B ‘352’ 4-FU having just arrived at Tampere-Pirkkala AFB. Note the greyhound of SPA 81 on the tail, Talios pod on the right side of the fuselage, FSO bulges in front of the canopy, as well as wingtip MICA IR missiles. Source: Joni Malkamäki/Ilmavoimat

Another good example of where French and Finnish national security interests align, and one pushed heavily at yesterday’s media day, is the emphasis on European solidarity. “France is leading the process to build a solid, European defence policy,” as ambassador Serge expressed it. This was also the point he came back to when questioned about what France can offer on the national security side that the other eurocanards cannot, and he does have a point. Finland’s stance on Article 42.7 might be ambiguous (and set to remain that way for the foreseeable future), but Finland most certainly is interested in a deepening European defence cooperation in a way that few other countries are. Except France.

It is a strange world when the country that has given us the gilet jaunes can market themselves as “the reliable and predictable national security partner”, but this is where we are in 2020. In part this is also due to the difference in French domestic and foreign politics. While French internal matters might be seeing quite a bit of turmoil, their foreign policy has been remarkably consistent during the last few decades. And that policy include a willingness to mobilise the sizeable force that is the French military whenever French interests are threatened. This is not only seen in Syria and Libya, but also in Mali and, crucially, in how France has stepped up their presence in the Baltic Sea region following Crimea. This includes ground troops, but also a sizeable contribution to Baltic Air Policing. The trick then is to ensure that French interests align with ours, something that is easier said than done. However, I would like to note that we are rapidly approaching diminishing returns in our already very deep cooperation with Sweden and the USA, something that isn’t the case for the Finnish-French relationship.

Ilmavoimat FB Rafale
It apparently needs to be repeated: HX Challenge is not a cold-weather test, but a verification of sensor and other prestanda as reported by the manufacturer. As a matter of fact, ‘301’ did separate winter tests for Dassault a year ago at Rovaniemi AFB. Source: Ilmavoimat FB

The French willingness to act on their security interests in turns leads to the next point that Dassault likes to make, namely that the Rafale is combat proven. Crucially, this isn’t just about dropping bombs in COIN operations, but include having “been tasked to go into very contested environments”. Famously, Rafale did fly missions into Libya during the early stages of the campaign when Gaddafi’s air defences were still operational, and it has also performed missions over Syria in the face of the air defences found there. The weapons suite used is also interesting, as not only does it feature the same cruise missile as the Eurofighter, the MBDA Storm Shadow/SCALP, but it also sports the unique French AASM-family of boosted precision-guided bombs. These allow for stand-off range attacks (60 km range reportedly being “not too far from the truth“, but obviously depending on launch height and speed), and come with a number of different seeker heads including INS/GPS, INS/GPS/IR, and INS/GPS/laser. As such, the Rafale is well-equipped to take out any of the targets envisioned in the Finnish RFQ.

© Dassault Aviation - K. Tokunaga
A single-seat Rafale C of 1/7 Provence in air-to-air configuration at BA 113 Saint-Dizier-Robinson, that also happens to be the home of the 1/4 La Fayette. Picture courtesy of © Dassault Aviation – K. Tokunaga

Traditionally one of the weaker parts of Rafale’s sensor suite has been the Damocles targeting pod. This was recognised as lagging behind the competition already a number of years ago, and the Thales Talios has been brought online as part of the F3R standard. The performance of the pod, capable of both reconnaissance and lasing, is likely one of the things that the Finnish Air Force will be eager to test. Unfortunately the huge AREOS strategic reconnaissance pod has not been brought to HX Challenge (at least not by air), which likely indicate that it isn’t being included in the offer at this stage. Unsurprising, but still a bit sad as it would have offered a really interesting step-change in capability. Another sensor that likely will attract a lot of attention as well is the Front Sector Optronics, the FSO. The FSO is made up of two modules, an IR- and a TV-sensor. As part of the F3/F3R program the TV-sensor has been upgraded, and the performance is rumoured to be very good thanks to high magnification and near-IR wavelengths. The IR-sensor is currently going through its update programme, but for the time being it is likely that the setup tested at HX Challenge feature the old IR-sensors. In addition, a laser rangefinder is also included, and the whole set can be slewed by the other active or passive sensors to find and identify an airborne target. This is in line with the Rafale putting great emphasise on passive intercepts of enemy targets through the use of several different passive sensors and fusing the data to present the air crew with a single threat picture. Whether it works in the cloudy skies of Finland is exactly the kind of question HX Challenge is designed to answer, and unfortunately this interesting answer will go straight into the folder marked “SECRET”.

*Often the FCAS designation is erroneously used for the new joint Franco-German fighter currently in development, while in fact the FCAS is an umbrella term to cover numerous air- and ground-based system making up the Future Combat Air System. Or as Airbus puts it, a system of systems “composed of connected, manned and unmanned air platforms, enhanced by different sensors and effectors. They will be part of an open, scalable system architecture that enables the inclusion of future platforms and new technologies”

HX Challenge pt. 1: Complete Independence

HX Challenge kicked off for real this week, with the Eurofighter Typhoon being the first contender (the sales team uses the Eurofighter designation, but I sincerely hope any Finnish buy would include us switching the British name. One possibility I might accept is translating it to Pyörremyrsky).

RS104326_5AEEE1FD-23AB-4513-8BF3-9F407690628F
The Eurofighter Typhoon FGR.4 of the RAF’s No. 41 Squadron (with the awesome motto of Seek and Destroy) takes off from Tampere-Pirkkala airport. As part of the same launch the T.3 got airborne with a Finnish Air Force backseater. Picture courtesy of BAE Systems/Kalle Parkkinen

Did we learn anything groundbreaking yesterday? Not really, but the media day did provide a comprehensive insight into what the consortium in general and BAE Systems in particular believe is their strong cards in a competition that is steadily moving towards the contract announcement next year.

The key word is “independence”. You buy it, you own it, and you decide exactly how you want to use it. These are notions repeated throughout the press material and briefings, and it is clear that they are aimed at differentiating the European project against the US competitors. The Eurofighter is described as providing an “unique opportunity” when it comes to taking control of the country’s security. The “no closed black boxes”-policy provides the ability to independently operate, maintain, and control the aircraft, also when it comes to questions such as mission data and upgrade paths. Full control of mission data is described (in the Finnish press release) as “indispensable” for operating a modern combat aircraft, and something that provide an information advantage that will only become more important as time goes*.

However, this should not be interpreted as BAE Systems pushing the “buy second best but get full control”-line. The aircraft is described as being the “most advanced multi-role aircraft on the market”, with the potential Finnish aircraft being given as ‘Tranche 4’-standard, i.e. one notch above anything produced up until this point. This is roughly the same configuration as the German order under Project Quadriga, importantly sporting the E-Scan Mk. 1 AESA radar, an upgrade compared to the Kuwaiti-standard featuring the export Mk. 1A. Another interesting detail when it comes to sensors is that of the two Eurofighters taking part in HX Challenge, a single-seat FGR.4 and a twin-seat T.3, one carried the current standard Litening 3 pod, while the other had the brand new Litening 5 which is currently on offer to Germany and expected to be acquired by RAF in the near future. The Litening 5 is also offered in an updated version with a synthetic aperture radar (SAR) integrated into the body of the otherwise electro-optical targeting and reconnaissance-pod. As a side-note, the Finnish Hornets received the most advanced version of the Litening II, the Litening AT, as part of their MLU2-upgrade.

RS104339_8394D242-C294-414D-A19C-82B9C4372947
To further emphasise the pan-European aspect of the Eurofighter project, all of the partner nations embassies were represented at the media day. It also clearly shows the big advantage in the number of significant operators the aircraft enjoys over the competition (with the exception of the F-35A) in this regard. Left to right: Luis Garcia Lumbreras, of the Spanish Embassy in Finland, Hans Werner Koeppel, of the Germany Embassy in Finland, Tom Dodd, British Ambassador to Finland, and Gabriele Altana, Italian Ambassador to Finland. Picture courtesy of BAE Systems

When it comes to weapons, the Eurofighters in Tampere-Pirkkala came equipped with ASRAAM short-range air-to-air missiles. Interestingly enough, the short-range air-to-air capability is not amongst the weapon systems described as ‘best-in-class’ in the press release. Instead, the weapon suite is described as offering “the widest range of weapons in the HX competition”, with beyond visual range air-to-air, deep strike, and high precision air-to-surface capabilities being best-in-class. It’s easy to see the close cooperation with MBDA playing a role here, as the weapons alluded to are the company’s Meteor, Storm Shadow, and Brimstone/SPEAR 3 respectively. The claim certainly seems tailored to meet the Finnish focus on the air-to-air role as well as deep strike, and while it is marketing, it is difficult to find weapons currently on the market that based on open sources can be stated to be objectively superior to the Meteor and the Storm Shadow, with the Brimstone and SPEAR 3 lacking direct competitors in most western arsenals.

But the HX Challenge isn’t just about flying around and punching holes in the air, a key part of the testing is the performance on the ground. This include not only studying how the aircraft function when the temperature is hovering around the freezing point, e.g. whether moisture getting into small crevices and freezing there will break stuff, but also what happens when the maintenance takes place outdoors or when the runway isn’t nice and dry (Finavia is cooperating with the evaluation by not maintaining the runways to their usual standard to simulate winter operations from dispersed bases). In fact, the ground testing will likely be more revealing than the air sorties, which in essence should only confirm data received in the offer and already verified in laboratory conditions.

RS86241_Typhoon snow pic
Three Italian Eurofighters during their Icelandic Air Policing rotation last year. Picture courtesy of BAE Systems

It is no surprise then that BAE Systems has also answered to this requirement, emphasising the robustness of the aircraft and the ease of maintaining it in similar conditions, such as during the Italian Air Force rotation to the Icelandic Air Policing mission and the RAF detachment operating in the Falklands. In Iceland the aircraft encountered exactly the kind of low temperature and wet conditions that the Finnish Air Force is interested in, and still were able to launch for all available missions. The squadron commander attributed this to the professionalism of the maintenance crews, as well as the fact that the aircraft is “very simple to maintain”.

The impact Tempest and FCAS will have on the development path still hangs as a cloud over the Eurofighter, regardless of promises that it will continue to be upgraded into the 2060’s. Still, the large number of operators gives the promise more credibility compared to corresponding promises by the other two eurocanards. With TyTAN going smoothly, the consortium is also confident enough that they have declared the cost of acquiring the aircraft to be “fixed and affordable”, going as far as stating the aircraft to be “the world’s most cost-efficient multi-role fighter”. The marketing plan seems simple enough – the Eurofighter is already here and working, it would increase Finnish cooperation with most of the major European security players, it allows fully independent planning of operations, upgrade paths, and maintenance (looking at you, F-35), and comes with a serious package of industrial cooperation benefits that would give Finnish aerospace and defence companies ample opportunities of cooperation with their European peers. How much of these talking points is backed up by real world prestanda is an open question, and one to be decided over the next twelve months.

The game just got serious.

*Interestingly, the information advantage-point is only found in the English version of the press release, and not in the Finnish one

Unmanned Underwater Vehicle in the defence of the Gulf of Finland

The videoclip below is interesting.

At the 1:57 time stamp, the Finnish Navy is seen launching one of the world’s most advanced autonomous weapons systems in its class. Having been deployed, it slips below the surface where it will lay in wait. Silent. Deadly. Not giving away its presence in any way, but constantly monitoring its surroundings. Waiting. Every movement is registered, and evaluated against the profiles stored in its database. And once there’s a match, it strikes, mercilessly.

I am obviously referring to the Finnish Navy’s PM16 (fi. Pohjamiina for bottom mine, confusingly enough a designation also used for the Finnish Army’s sensor-fused anti-tank mines), the newest addition to the Finnish family of influence mines that started with the PM90, and has since seen the addition of both the PM04 and the PM16 visible above (the PM90 has also been updated to PM90MOD status with an all-new “brain” and sensor-suite). In addition, the Navy has operated British Stonefish (as the PM-85E) and two different kinds of Soviet mines as the PM83-1 and PM83-2 (possibly the MDM-4 and UDM), though these are likely retired by now. Mines are seen as a strategic threshold capability in Finnish doctrine. They can seal off the chokepoints an aggressor needs to enter Finnish territory from the sea, and they will cause significant stress for anyone forced to operate within areas potentially mined. The very shallow nature of both the Gulf of Finland as well as the Archipelago Sea also lend themselves well to both traditional moored mines as well as influence mines. Obviously, history has also shown that in case war would break out, mines can be used to seal of the Gulf of Finland completely. This would make it impossible for vessels to transit between the Russian Baltic Fleet’s main base Baltiysk in Kaliningrad and the Russian mainland, and isolating St Petersburg from the Baltic Sea.

The influence mine is usually not included in discussions regarding autonomous weapons, though there really is no reason why it shouldn’t. After all, it is a system that does all decision making completely on its own once it is released into the wild, with no human in or on the loop. However, the main issue with the mines is that they do not move*, and once a minefield is cleared that area is free to use**. Wouldn’t it be even better if the weapon could move around, suddenly appear in areas previously thought of as safe, or quickly be despatched to areas where control over an area protected by a minefield has been lost?

low-cost-xluuv-cutaway
The original artwork of H I Sutton’s XLUUV concept. Picture courtesy of H I Sutton/Covert Shores

Naval analyst H I Sutton presented an interesting concept on his homepage recently. In short, he asked himself why the concept of operations for the Iranian Ghadir-class of midget submarines – stay hidden close to shipping lanes, wait for surface targets, and then torpedo them – couldn’t conceivably be automated. Wouldn’t an extra-large unmanned underwater vehicle in the class of the US Navy’s Orca-program be a good fit for the mission. Most XLUUVs at the moment are designed for modularity and the possibility of taking up a number of different roles. By focusing on the single relatively straightforward mission of ambushing surface vessels, the complexity and cost becomes lower (to get a feeling for the costs, the current Orca-program has seen Boeing bag a recent order “for the fabrication, test, and delivery of four Orca” worth 43 million USD, following on a roughly equally large contract covering the design phase of the competition).

The XLUUV envisioned by Sutton would sport air-independent propulsion in the form of a stirling engine, and two pre-loaded 533 mm torpedo tubes would provide the sting. An endurance in excess of a week could be achieved, and further cost-savings could be had by restricting the requirements when it comes to performance, including max-depth.

It is easy to see how beneficial a system such as that described by Sutton could be for Finland. A handful of vessels could easily cover the Finnish coastline, and they would be at their strongest outside of the archipelago, a place where the Finnish Navy prefers to spend a relatively limited part of their time. It is also easy to see the value of a remote sensor function where the XLUUVs occasionally send back particularly interesting sensor tracks to the mainland, though this naturally has to be balanced against the value of staying completely silent.

However, it is also easy to see why the Finnish Navy likely won’t pursue this line of development. The Gulf of Finland is shallow enough that more or less any part of it, including the open waters, can likely by mined with bottom mines (and in any case traditional moored mines remain in use as well), and as has been discussed earlier the narrow straight means that any vessel moving in the open waters will be spotted and could be targeted by both artillery and land-based anti-ship missiles. As noted earlier, what the XLUUV option would bring to the Gulf of Finland would not be so much the capability to close of the gulf, that is already possible, but to do so with systems that are extremely difficult to track and take out. The relatively limited firepower of two tubes would also mean that the main threat of any single vessel would be in the psychological realm rather than purely kinetic capability (though considering the limited number of vessels in the Russian Baltic Fleet, XLUUVs that only strike once they match the profile of e.g. LSTs would present a serious headache for the aggressor).

Echo Voyager
The 15.5 meter long Echo Voyager is the basis for Boeing’s Orca XLUUV. Note the worker standing on the platform behind the vessel, providing scale. Source: Picture courtesy of Boeing

Another question is whether they actually might hold more use in the ASW role, as getting the sensors and weapons for the mission out to open waters without taking undue risks is something of an issue currently. This could also see a step-down to tube-launched 400 mm torpedoes (something the Swedish submarines currently use), making room for a larger number of torpedoes. The choice of only attacking underwater targets would also ensure a significantly smaller risk of collateral damage, something that certainly would aid in public acceptance of the system. Because let’s face it: it might be argued to be intellectually dishonest as I did at the start of this text, but the general public stills sees the sea mine as an explosive round and an autonomous XLUUV as a ‘killer robot’. Any procurement of the latter will first have to overcome this political hurdle.

* There are obviously self-propelled mines, combining the features of the torpedo and sea mine (somewhat ironically, as the term “torpedo” originally referred to mines, with today’s torpedoes being “self-propelled torpedoes”). Saab and Naval Group are both working on development projects aimed at producing modern solutions blurring the torpedo/UUV/mine definitions

** This is only true as long as the area really is clear, something that has proven to be surprisingly difficult to validate. Solutions such as the JDAM-ER with Quickstrike could also quickly change the situation, with e.g. two Super Hornets being able to swiftly put sixteen 450 kg mines on individual pinpoint locations

Sources:

Concept for low-cost autonomous anti-ship submarine

Laivaston sanomat 5/2018

Herätemiinojen kehitystyö Merivoimissa

The Naval Institute Guide to Combat Fleets of the World, 16th Ed.

Keep on Rockin’

News recently broke from Denmark that the cost of the new light hangars and other infrastructure being added to Skrydstrup Air Force Base in anticipation of the arrival of the first F-35s has almost doubled from 650 million DKK (87 MEUR) to 1.1 billion DKK (150 MEUR). The news itself isn’t quite as dramatic as it looks, part of the changes stems from a change in the decision of where on the base the buildings will be placed, and it actually matches the savings of 443 million DKK (58 MEUR) that the cost of the aircraft themselves have experienced since the acquisition approval in 2016 (part of which is the drop in price of the F-35A, part of which is a more favorable exchange rate), leaving the 20 billion DKK (2.7 billion EUR) total budget largely unaffected. However, it does highlight an often overlooked issue with fighter programs, namely that a new fighter is seldom just able to drop into the slot left by an outgoing aircraft. No two transitions are exactly alike, but it does offer an interesting perspective that in the case of Denmark, infrastructure representing 5% of the value of the fighter package will have to be built, and it is something to keep in mind in February when two different Boeing-built fighters will touch down at Tampere-Pirkkala to take their turn in HX Challenge.

Screenshot_2019-11-23 LHuHrcQI (JPEG Image, 800 × 800 pixels)
A Finnish block III F/A-18E Super Hornet (closer) and an EA-18G Growler flying over a decidedly northern Finnish landscape in this render. Picture courtesy of Boeing

The Boeing F/A-18E/F Super Hornet and EA-18G Growler namely are more or less plug and play when it comes to using the existing Finnish Air Force infrastructure. Granted there are likely some obsolescence issues, general need for modernization, and the simulators will have to be replaced/seriously updated, but in general the Super Hornet can jump right in where the Hornet is currently. Exactly how much that benefit is worth compared to the competitors is unclear, but with all manufacturers having problem squeezing 64 fighters into the 10 Bn Euro budget, that also include these kinds of infrastructure changes, Boeing will have a measurable advantage.

But it doesn’t stop there, as the Super Hornet fleet would be able to utilise many of the weapons currently found in the arsenals of the Finnish Air Force. These include not only the ubiquitous AIM-120C-7 AMRAAM and the somewhat less widely certified AIM-9X, but also the JDAM and JSOW, which aren’t in use by the eurocanards. While the timeline until the retirement of the Hornet is long enough to allow for a bit of planning in arms acquisitions, the savings in weaponry can quickly start adding up, and also ensures that there isn’t a gap in missiles orders but a rolling transition which makes stepped buys of HX-weaponry easier on the budget post-2030. An interesting weapon is the silver bullet AGM-158 JASSM, which reportedly has a shelf-life roughly stretching to the end of the Finnish Hornet-era. As it is safe to assume that any Finnish Super Hornet-fleet would use the JASSM as their long-range strike weapon, this would open up the possibility of a JASSM-overhaul (possibly including some features of the current AGM-158B JASSM-ER model) that likely would be cheaper than acquiring new-built Storm Shadows.

Renders are always an interesting subject, as they provide an indication of what the manufacturer sees as the aircraft’s strong cards. In the render above Boeing has not only included the mid- and low-band NGJ pods (Next-generation jammers) currently undergoing testing and an AGM-88E AARGM anti-radiation missile on the Growler, but the single-seat F/A-18E Super Hornet feature the AARGM as well, in addition to a podded IRST-sensor and a respectable air-to-air load of six AIM-120 AMRAAM and two AIM-9 Sidewinder missiles. Considering that the Finnish Air Force places an emphasis on the counter air mission, i.e. the “candidate’s capability to perform in combats both with fighters and ground based air defence”, this is a serious combat load for the mission (it might in fact be overtly ambitious as a general load considering the cost of the weapons involved) as it allows the aircraft to not only target enemy aircraft, but to force enemy ground-based radars to either go dark or risk receiving an AARGM-sized hole in their arrays. While the basic F/A-18E isn’t capable of the kind of widespread jamming as the Growler, it does bring more shooters to the SEAD-battle compared to just having a handful of Growlers. For those interested in the lack of external fuel tanks, it should be noted that the aircraft carry conformal fuel tanks, and that this is Finland and not to the USINDOPACOM, so range requirements are rather modest.

In the meantime the Finnish Air Force is building it’s multirole capabilities, which will carry on to the HX. In the clip above from current high-end exercise KAAKKO 19 soldiers of Kymi Jaeger Battalion provide suppressive fire while a JTAC first directs artillery fire onto target, and then directs a live JDAM drop from a Hornet to finish off. While one can discuss the role of the JDAM in contested airspace, the preferred high and fast drop profile isn’t necessarily a great idea if inside enemy SAM coverage, the modern low-density battlefield does provide settings where it could come in handy.

But the low-density battlefield doesn’t just create opportunities for the Air Force to pound enemy ground forces outside of their integrated air defences, it also places high demands on issues such as situational awareness to avoid own losses, both in the air and for the units being supported on the ground. While not the most talked about features of the Block III compared to earlier versions of the Super Hornet, two items brought in with it gives huge improvements in this field: the Distributed Targeting Processor-Networked (DTP-N) and the Tactical Targeting Network Technology (TTNT) data link. The short version is that the TTNT gives more bandwidth compared to legacy datalinks, allowing more information to be transferred between aircrafts (and other sensors), while the DTP-N gives the computing power to be able to make sense of this increased data flow by fusing not only data from the aircraft’s own sensors, but from the sensors of other aircraft as well. Together they allow for the creation of a Common Tactical Picture (CTP), ensuring that all aircraft knows what any of them sees.

Now, the CTP could potentially provide the answer to one of the headaches Boeing is likely facing, namely the F/A-18E + F/A-18F + EA-18G mix. The basic fighter in the (approximately) 64 aircraft fleet will be a single-seater, in this case the F/A-18E. In addition, a number of twin-seaters will likely be included to allow for training, in this case the F/A-18F. The Finnish legacy-Hornet fleet was made up of 57 single-seaters and seven twin-seaters, with the Finnish Air Force publicly stating that in hindsight they would have preferred a larger amount of twin-seaters (this led to the unfortunate “frankenfighter”, HN-468). E.g. Saab has solved this by offering a 52 + 12 mix of single- and twin-seaters, noting that twin-seaters offer better performance in a number of missions, including SEAD/DEAD, complex ground-attack scenarios, or with the backseater working as a mission commander.

ilmave_jassmruska17ssc3a4_20171011
A Finnish F/A-18C Hornet during exercise Ruska 17, sporting a single AGM-158 JASSM under the starboard wing. Source: Ilmavoimat

The headache for Boeing is the fact that the EA-18G already takes up precious slots in the fleet. Looking at the typical carrier aircraft wing, it is likely that something along the lines of eight to twelve Growlers are included in the Finnish offer. Twelve standard twin-seaters would leave an Air Force with only 40 single-seaters, and while the twin-seaters are fully combat capable, there are additional costs associated with them (and with training WSOs/mission commanders). The Growlers in particular, while extremely capable and impressive, come with a premium price tag. The question then is whether the number of Fs could be scaled back? Notably the F-35A is offered only as a single-seater, and with modern fighters being easier to fly compared to legacy aircraft has made it possible to shift all or parts of conversion training to simulators and single-seaters. There is also no particular need for SEAD-configured F/A-18Fs, since that is what the EA-18G Growler is all about. The Finnish Air Force also currently flies the majority of the ground-attack missions, including long-range strike missions, with single-seat F/A-18C Hornets. The idea behind a mission commander is interesting on paper, but considering the generally improved situational awareness presented by wide-angled displays and the CTP, it is questionable if it provides enough of an edge to justify a serious buy of F/A-18Fs. Instead, leaving the mission commander role to either ground control or the senior F/A-18E pilot might very well be the desired outcome. The final ratio will likely be decided only once the wargames are over, but don’t be surprised if the number of F/A-18Fs is on the lower end.

Eurofighter goes Electric

When a European country without a domestic candidate looks for a multirole fighter, I usually rank the chances of the Eurofighter somewhere between “low” and “abysmal”. It’s not that it’s a bad aircraft, but the decision by the partner nations to focus on air-to-air performance, and to first roll it out into service for the air-to-air role, has meant that the aircraft has been weighed somewhat differently than what your average F-16AM operator wishes for.

RS100755_DP112952-lpr
Often overlooked is the fact that BAE Systems is one of two companies whose fast jets currently are in service with the Finnish Air Force. The humble Hawk might be a far cry from the Typhoon, but it offers BAE Systems decades of experience of working with the Finnish Air Force. Picture courtesy of BAE Systems

However, not every country in Europe is a F-16 operator. Finland is a very happy F/A-18C Hornet operator, and looks at fighters in a somewhat different way from many otherwise comparable European air forces. Part of this is down to history, part of it is the lack of a military alliance, and eventually it all translates into doctrinal differences. The gist of the argument is that the air-to-air mission always comes first, and once that can be handled, the rest will take care of itself. Or as HX programme director col. Keränen puts it:

These scenarios [according to which HX contenders are evaluated] include counter air (air defence), counter land (air to ground), counter sea (air to sea), intelligence, surveillance and reconnaissance (ISR) and targeting, and long-range strike.

Out of these five scenarios, counter air is the most critical one and therefore takes precedence. Counter air is where a candidate’s capability to perform in combats both with fighters and ground based air defence is evaluated. This is a critical capability: the HX multirole fighter may get engaged in air combat or be attacked by ground based air defence in addition to other tasks.

The official translation of the Finnish text might not be the best, but you get the point.

For Finland, the Eurofighter actually does make sense in quite a few different ways. The focus on speed and semi-recessed missiles is just what’s needed for the air policing mission, which is the key operational mission of the Air Force in peacetime. Especially after Kuopio-Rissala became the most important base for the intercepts over the Gulf of Finland, cruise speed is of the essence. For the long-range strike role, even operating solely on internal fuel the Eurofighter/Storm Shadow-combination could easily replace the JASSM equipped Hornet. The Eurofighter also has a large number of operators, all with slightly different outlooks on how to meet the need of the modern battlefield, providing several development paths to choose from.

One of the more interesting changes to appear this autumn has been the renewed focus on electronic warfare in general and the SEAD/DEAD-mission set in particular. The Eurofighter feature the DASS (Defensive Aid Sub-System), but it has generally been regarded as inferior to the SPECTRA of the Rafale or to the upcoming Arexis of Gripen E. Whether this is a correct judgement or simply an effect of the focus placed on the EW-part of their aircraft in the marketing by Dassault and Saab is impossible to judge conclusively based on open sources, but it is now clear that the Eurofighter consortium has decided to step up their game in this area.

Eurofighter Typhoon
Nothing quite says ‘electronic warfare’ as having the shape of the aircraft outlined in turquoise mesh. Image courtesy of BAE System, created by images.art.design. Werbeagentur

A key item here was the announcement of the Praetorian Evolution concept for a thorough upgrade of the DASS. Part of the larger Typhoon Long Term Evolution activity, in the words of a BAE Systems representative the “Praetorian Evolution is a conceptual roadmap that presents a number of options for a future DASS architecture”. As such, it isn’t a set package, but an assortment of options that can be picked by the operating countries to move forward with. A key part enabling this is the the ‘all digital architecture’ of the updated DASS. Elements of this already exist within the current DASS, but Praetorian Evolution would see the digital coverage increased within the system to take advantage of recent advances in the field. The idea is to turn the cranks to eleven, creating what Eurofighter has dubbed “digital stealth”.

Yes, it’s a marketing term. But as Eurofighter has decided to use the moniker for it’s EW-concept, it’s worth looking into what they mean with it to understand how they envision the Eurofighter will operate to stay survivable and lethal on the future battlefield.

The approach is two-pronged:

First, the situational awareness has to be good enough to supply the pilot with an accurate picture of the threat environment to highlight which emitters are where, allowing the pilot to make informed decisions to keep the aircraft out of range from SAMs and enemy fighters. A key part here is the mission data set (including the database allowing the correct identification of emitters), which can be updated within ‘hours’ to ensure that the aircraft understands what the sensors see. On a slightly longer scale, the software behind key subsystems such as the radars will be updated every few months. This is also a feature of the Eurofighter’s lack of locked black boxes and unforgiving IP’s that is a strong selling point compared to the transatlantic competition.

However, it isn’t always possible to simply hide and stay out of harms way. In those situations, the EW suite will do its best to either hide the signature of the aircraft, or create enough noise to make the picture confusing as to deny the enemy a targeting opportunity. For this part, the aircraft not only employ onboard, towed, and podded sensors, but will also feature the upcoming SPEAR EW. This is a stand-in jammer based on the same hardware as found in the BriteCloud expendable active decoy (also integrated on the Eurofighter), but mounted in place of the warhead on a SPEAR missile. This lighter and smaller load compared to the warhead allows for up to three times the range of the normal SPEAR, and ones fired the missile can fly towards the enemy and either simply blind the enemy radars, or spoof them by creating one or several (50 being mentioned) false targets. The triple-carriage of the baseline SPEAR is also available for the EW-variant, and allows the operators to mix and match however they want (a total of twelve can be carried on four hardpoints while still leaving the two ‘wet’ wing stations free for drop tanks). As the SPEAR is the RAF’s SEAD-weapon of choice, this allows for interesting combinations, where a pair of Typhoons can release a SPEAR EW acting as a false target to bait the enemy air defences into action, allowing the fighters to map the current positions of the enemy radars. These are then jammed by a salvo of a few more SPEAR EWs, while at the same time a dozen (or more) standard SPEAR missiles target the radars in saturation attacks. However, the SPEAR EW isn’t just a SEAD/DEAD weapon, but also plays an interesting role in air-to-air scenarios, where the ability to spoof enemy fighters create interesting tactical opportunities. While the SPEAR EW was officially unveiled only this autumn, it is part of the Eurofighter-package for HX.

Electronic combat capability is offered to Finland in our proposal in a different way [compared to the ECR] through developments in electronically-scanning radar technology and the integration of electronic warfare weapons such as SPEAR EW, which is being developed through a UK-funded programme.

Which brings us to another recently unveiled project that caused quite a stir, the Eurofighter ECR concept offered to the German Air Force.

The German Air Force is one of three NATO air forces to operate a dedicated SEAD/DEAD platform, in the form of the Tornado ECR operated by the TaktLwG 51 “Immelmann”. These will bow out together with the rest of the German Tornado-fleet during the next decade, and a replacement for the Tornado IDS and ECR fleet is sought either in the form of more Eurofighters or F/A-18E/F Super Hornets, with EA-18G Growlers providing the Tornado ECR-replacement. The Eurofighter ECR concept is tailored to meet the German requirements, and include signal-homing missiles in the form of the AGM-88E AARGM, new large podded jammers, two more ‘wet’ stations to allow the drop tanks to move out of the way for said jammers, and a new decoupled rear cockpit for the WSO. The ECR as such is not part of the offer to Finland, but “as with any technology developed by the Eurofighter consortium, the option of an ECR will be available to Finland as a future growth option.” The options also include picking just the parts of the concept deemed suitable for Finnish needs. This could e.g. translate into acquiring just the jammers without the new ‘wet’ stations and accepting the range and endurance limitations it causes.

The Eurofighter consortium’s claim is that “digital stealth” is more flexible and adaptable than traditional low-observable technologies which are built into the aircraft itself, and can more easily be adapted to face new threats. This largely follows the same line of reasoning presented by Boeing, Dassault, and Saab, and on paper hold serious merit. If there is a breakthrough in some “anti-stealth” technology, the F-35 might lose it’s most important unique selling point. However, for the foreseeable future the X-band radars will continue to play an important role in most engagements, especially for the crucial step of producing an accurate enough fix on the target’s location that it can be shot down, and here a smaller radar cross section is always smaller than a larger radar cross section. The question is how big a difference that makes compared to other features? Currently the answer is “quite a lot”, but will the same answer hold true in 2035?

Spanish Tiffie
The large number of users is perhaps the best argument for the Eurofighter continuing to be updated into the late 2050’s. Here a Spanish aircraft touches down on Finnish ground. Source: Own picture

The Eurofighter is still an underdog in the HX programme. The largest question continues to be if, and in that case how, BAE Systems can guarantee that Finland won’t be left as the sole operator trying to keep the aircraft at the cutting edge past 2050. The aircraft itself likely isn’t the issue, the space and raw power certainly is there, but the question is if the other operators will be interested in spending money on it after the FCAS and Tempest programs sees new aircraft entering service sometime after 2040. Still, it wouldn’t be the first time an underdog scores big in a Finnish defence programme, and the Eurofighter does have a few really strong cards on hand. Played right, and the competition just might turn out to the benefit of the large eurocanard.

HX Challenge on the Horizon

The next phase of HX has started, and things are starting to get serious. Last Thursday the revised call for tenders was sent out, with a deadline for answers until 31 January 2020.

A crucial point here is that this is a planned continuation of earlier negotiations, and not a restart. The manufacturers are asked to refine their earlier offers, providing a clear package, including any potential updates that has taken place and generally improving their offers. While the original call for tenders was generic, this round all five have received individualised RFQs based on their earlier tenders.

© Dassault Aviation - A. Paringaux
Much of the operational (including combat) use the HX contenders have seen has taken place in decidedly un-Finnish environments. As such, HX Challenge will verify to what extent data from this usage is transferable. Picture courtesy of © Dassault Aviation – A. Paringaux

Two notable developments have taken place this fall. The first is the allowance for different numbers of aircraft than the originally envisioned 64. This provide room for anyone able to squeeze in a few extra hulls, but also for anyone wanting to argue that higher availability and/or increased combat capability compared to the current legacy-Hornets allows for a smaller fleet. At the same time, the 10 Bn Euro ceiling has officially been approved by the government. As has been discussed earlier, the plan has throughout HX been not to ask “How much for this package?”, but rather “What’s the best package you can offer under a set budget ceiling?” Major General (Eng.) Renko also went on record last week to say that all five manufacturers experience “difficulties” fitting their offers under the ceiling. In the end, we will see five bids for just under 10 Bn Euro, with the difference between them likely being no more than change (relatively speaking).

We also finally have more details on the verification flight tests. The flight test programme, dubbed HX Challenge, will take place out of Tampere-Pirkkala in January-February. The field is home to Satakunta Air Command and the Finnish Air Force’s Air Combat Centre sorting under it. ACC is responsible for both flight testing as well as for participating in the development of air combat tactics and doctrines.

The aircraft will not be put in order at this event, but rather only verification of performance and subsystems will take place. This includes ensuring that the manufacturers haven’t supplied incorrect information to the simulations used for the evaluation, but also to test how e.g. electro-optical sensors work in Finnish conditions. In cases where both single- and twin-seaters are available, Finnish pilots flying as backseaters will also take part in the tests. While failure to show up for HX Challenge won’t by default disqualify a contender, it would weaken their chances moving forward in the competition. Considering the costs of flight tests this will be a serious test of how invested the contenders are, and by extension how fair the competition is felt to be amongst the industry. A few odd-birds are found in the field. F-35A is the sole single-seat only fighter, while the yet to fly 39F will likely be represented by the revamped 39-7 testbed. While Saab declines to discuss GlobalEye in relation to HX Challenge at this time, they more generally confirm that a verification scheme has been devised and presented to the Finnish Air Force. EA-18G Growler obviously can’t showcase it’s full capability in the region, so it will likely be verified in other ways as well.

HX Challenge is part of the first step in evaluating the combat capability of the aircraft, by ensuring that the input data for the later modelling is done correctly. After this is done, simulated scenarios from the RFQ will be run with four-aircraft strong flights (fun fact, Finland was one of the pioneers in developing two pairs as the basic air combat element in the 1930’s). The aim here is to judge the survivability, ability to perform set missions, and the effectiveness in destroying enemy assets. As this is the Finnish Air Force, air-to-air capabilities will be the most important facto. An interesting question is how exactly simulations will be run. The word virtuaalisimulaattori (virtual simulator) is used, which seems to indicate a full man-in-the-loop simulation (think DCS on steroids, video by Jonathan Lundkvist). This is interesting in many ways, and should give a more correct picture as the value of sub-systems such as helmet-mounted displays and wide-angle displays are included in the evaluation. A good is example is how Gripen pilots like to talk about the benefit their man-machine interface provide compared to more traditional presentations of data which rely heavily on numerical values, and how this isn’t evident in traditional Monte Carlo-style simulations. With HX Challenge and a full-blown simulation the four-ship combat value should be found as accurately as possible without actually leasing four-ships and having them blow stuff up.

These data will then provide the input for a round of grand wargames taking place in the later part of 2020. Here the HX contenders will be simulated as parts of the complete Finnish defence system. This third stage will be the sole stage following which the contenders will be place in any kind of order. Based on this picture of the fighting capability of the aircrafts in their 2025-configuration together with input from an study into the development potential of the system (it’s never just about the individual aircraft) up until the end of the 2050’s the final warfighting capability-ranking will be made, and this should then in turn dictate which aircraft will be bought (the rest of the conditions being pass/fail-style).

A Long Text about Seven Short Minutes

Twelve years ago, about this time of the year, I was charging down a sea lane in the outer archipelago as the helmsman and engineer of a Jurmo-class landing craft. On my left side one of my fellow conscripts sat and focused on navigating, as he was working as the skipper of the vessel that day. Both of us were also keeping a lookout around the vessel. We had both received the same training, allowing to us serve as helmsman/engineer or as the skipper/navigator of the Jurmo, and when out on longer exercises we usually rotated between positions every other day. Following a sharp left-hand turn which took us straight towards an island I spotted a Pansio-class mineferry. Just before the island we were headed towards we would turn sharply to the right, and the large vessel now sat directly at the turning point, in front of the island. As we got closer, I noticed that it seemed like the skipper might not have noticed the mineferry, so a couple of hundred meters out, with plenty enough time for us to take the turn safely, I drew his attention to the vessel and asked how close he wanted to go. “Oh fuck, I did not see that one coming,” he said. “Helm to the right.” I acknowledged the ordered and we used the fact that we had plenty of water under the keel to our advantage to cut the corner slightly to maintain a safe distance without having to slow down for the passage.

Just over eight years ago, I was on my first ‘real’ job in the maritime industry working the summer at local boatyard Kewatec Aluboat. Much of the job revolved around the Pilot 1500-class of fast pilot vessels which were just being finished and delivered to the Finnish pilotage service Finnpilot Pilotage Oy. Despite being a green mechanical engineer roughly halfway through university I got to do some fairly interesting stuff, such as riding along on the sea trials to keep book on results such as RPM relative to speed and noise level measurements. Eventually Kewatec would be my first full-time employer, and I spent a few really interesting years there before moving on to what was then Rolls-Royce’s waterjet division (now Kongsberg Maritime Finland).

Both of these experiences came vividly back when I last week got a Twitter DM with the Finnish Safety Investigation Authority’s report on an incident where the Pilot 1500-class fast pilot vessel L239 had come close to colliding with the Hamina-class fast attack craft Hanko last December. Out of curiosity I did a quick glance through the abstract of the report, and might have left it at that if it wasn’t for the fact that the newspaper headlines that came out of Finnish daily Turun Sanomat over the next days didn’t square with the impression I had been left with.

Screenshot 2019-10-30 at 19.19.56
24 October 2019: “SIAF: Attack craft hiding caused incident – requests risk assessment plan from the Navy”
Screenshot 2019-10-30 at 19.24.00
25 October 2019: “The Navy will continue to sail around with safety signal blacked out – The collision was 8 seconds away”

In fact, the report does not lay the blame on the lack of AIS on the part of the Hanko. Nor is AIS some kind of magic safety beacon. But let’s start from the beginning.

In the early hours of 1 December 2018 Hanko was transiting southwards in the Sköldvik sea lane. The weather and visibility was generally good (considering it was pitch-black with clouds), but the wind was near gale at an average speed of 16 m/s (note that in the narrow waters this meant a wave height of 2.4 meters). At the same time, L239 left Emäsalo pilot station and entered the same lane heading north. Hanko picked up the vessel as soon as she left port, and started tracking her using normal procedures. Notably, Hanko that had been steaming down the lane to the left of the midline (her left) altered course slightly to get over to the right side of the lane to allow for a standard passing where both vessels hold to starboard (i.e. right-hand traffic as is the international standard on the seas). Hanko, in accordance with standard procedures of the Finnish Navy, did not have her AIS switched on, but had reported her general area of operating to the local Vessel Traffic Service (VTS), which informed the pilot vessel that a naval vessel was operating in the area. L239 did however not spot the Hanko when she left port, and a radar echo of the vessel was dismissed as a flock of birds.

The plotted course of the L239 (red) and Hanko (Blue). Source: OTKES

The route was a standard run for the L239, and when the lane was empty the pilot vessels usually took the shortest (and somewhat more sheltered) route in the interest of saving time and fuel. This put the pilot vessel well to the left of the middle line, i.e. heading straight for the Hanko. While Hanko was cruising at a moderate speed of about ten knots, the L239 was doing close to 25 knots with the wind at its back. A few minutes later the crew on the bridge of the Hanko realised that the pilot vessel hadn’t noticed them and immediately stopped (as the vessel is equipped with waterjets, it is able to quickly stop even from a considerable speed). At the same time the skipper of the pilot vessel noticed something in front of him, and turned on the spotlight. This showed an unidentified vessel right in their course, so he quickly reduced speed and turned right towards the midline of the sea lane. The two vessels passed each other at approximately 40 meters distance. The whole incident had taken place in less than seven minutes from L239 leaving the port.

Here we’ll take a short interlude to discuss what AIS is and isn’t. AIS is an automatic transponder system that sends data over the normal VHF-band. This usually include the vessel’s name, position, heading/course, speed, and potentially a number of other pieces of information (turn rate, heel, destination, ETA, current mode of operation, …). On the positive side it is inexpensive, simple, and when combined with other systems such as radars and chart plotters it provide a situational picture that is easy to read and interpret. It is mandatory equipment for a number of vessels, including merchant and passenger vessels. Crucially, it is not mandatory for neither pilot vessels nor for naval vessels.

IMG_2975.JPG

AIS has been in the headlines a number of times in recent years, including its role in the collisions of Norwegian frigate KNMS Helge Ingstad and the two US Navy destroyers that collided in separate incidents in the Pacific in 2017. However, it is crucial to note that not only is AIS susceptible to spoofing, it can also simply be switched off at the flick of a button. In Finnish waters, as opposed to out on the high seas is the majority of vessels moving around are not fitted with AIS due to their small size. Pleasure crafts might not be moving around in the Sköldvik area in the middle of the night in two meter high waves in December in any huge numbers, but there’s always the risk that some local is heading out to check on his summer cottage. As such, AIS is not God-mode view on a bridge display, but just another (very good) source of information to build up situational awareness. As a matter of fact, navigating solely on electronic aids such as AIS, or radar for that matter, is not allowed under international rules, as all vessels are required to keep a proper lookout.

Going back to my opening story from 2007, there were a few issues that could have led to it ending badly. The first was that we were under a tight schedule. We were part of an exercise scenario with several moving parts, and it was crucial that our vessel were at the designated point at the designated time. The second issue was that the timing of us and the Pansio-class crossing paths was very unfortunate, with it coming from an unexpected angle and with our vessel turning towards it at a time window measured in mere minutes when it wasn’t silhouetted against the horizon but completely in front of an island. The vessel, like the Hamina-class, is also painted to easily hide in the archipelago, and the colours work extremely well. However, the Navy doesn’t just throw enlisted conscripts into a fifteen meter vessel with a thousands horsepowers to work with and see what happens. There are clear cut roles and procedures to follow to ensure safe operations, and before one gets to sign the line next to the word “Skipper” in the logbook there’s a number of steps and certifications that you need to meet.

As mentioned, these procedures include that both crewmembers keep a lookout. The reason is simple: the skipper will need to keep one eye on the navigation, including the paper chart, chart plotter, and the radar, while the helmsman will need to keep one eye on the engine instruments. If something starts to go ever so slightly off the rails, it is easy for either crew member to be distracted and spend too little time looking out the windows, and as mr. Murphy dictates, that always happens at the worst possible time. As such, having both crew members keep their eyes open is a necessity. In our case, the training showed its worth, and the situation was solved safely and without incident.

As such, reading the report, the most baffling detail for me personally is that the pilot vessel always operate with two certified skippers aboard, of which one function as the vessel crew and the other is the safety guy when the pilot is transiting between the vessel and the ship. This isn’t baffling in itself, but the safety guy has no duties whatsoever while the vessel is underway, not even a general recommendation to keep looking out the windows! While the vessel is built to be able to be operated by a single crew member, not using the available resources is a strange decision to say the least.

Mod IMG_7072
FNS Hamina leading sister FNS Hanko, showing their dark colours optmised for hiding in the archipelago. Source: Own picture

The Hanko on the other hand was naturally operating with a significantly larger crew. The persons on the bridge included not only an officer of the watch, but also a navigator, a assistant navigator, and a dedicated lookout working outside of the vessel. As noted, the crew noticed the L239 as soon as it put out to sea, and assumed that the pilot vessel had noticed them in turn.

This was likely the single largest shortcoming on the part of the crew of the Hanko. Having a very good situational awareness thanks to good working procedures, it’s easy to start assuming this is how all professionals at sea operates. Giving a short radio call to the L239 to confirm that Hanko switches from left to right side of the sea lane for a standard meeting would have ensured that both vessels knew of each other’s presence. Hindsight 20/20, as they say.

However, the actions of the pilot vessel is harder to explain. The skipper knew that there was a naval vessel in the area but apparently did not try to locate it. There doesn’t seem to have been any discussion that the safety man would assist in keeping a lookout, nor any decision to slow down or keep in the correct part of the lane in case someone else was moving in the night. Granted the Pilot 1500 series is well-equipped to be handled by a single crew member, it sports two large displays for the radar and the chart plotter placed in front of the skipper to allow for a minimum of head movement when switching between checking them and looking out the windows. However, the rule (both written and unwritten) is that electronic aids support looking out the windows, not the other way around. This is especially true in cases where getting a clean radar picture is difficult, such as in rain or rough waves, where one easily end up either getting the screen overtly cluttered or filtering away real echos. While the report doesn’t mention it, the fact that such as large radar target as the Hanko was mistaken for a flock of birds does indicate that the radar didn’t provide a good and easy to read radar picture at the time of the incident.

Stealth interlude: Yes, Hanko feature signature reduction measures, but it isn’t invisible to radar by any stretch of imagination. In a later reconstruction the pilot vessel’s radar was able to pick up the FAC well beyond two nautical miles (beyond 3,700 meters), the VTS also got a clear radar echo of the vessel, despite the tracking algorithm having some issues tracking Hanko correctly at the time of the incident.

The report by the authorities notes five conclusions, of which two are related to the reporting processes for incidents and accidents on a national level. The three others are:

  1. The tracking of non-AIS transmitting vessels require use of radar and particular care by the VTS-operators,
  2. The resources of the pilot vessel were not used optimally considering the conditions,
  3. The crew aboard vessels that try to avoid detection don’t necessarily recognise the risks this create.

In other words, the report does not blame the Hanko, nor the lack of transmitting AIS on it’s part. The standard procedure of the Finnish Navy is to have the AIS turned off due to operational security considerations. Navies around the world have varied views on the use of AIS, with some having it always off, some having it on without IDs, and some having it on close to shore but off when at sea. Steffan Watkins has a good overview, but as usual things are different between the Atlantic and the Gulf of Finland.

A key difference is that Finnish vessels don’t transit. The operating area often starts when the quay is left behind. Another is that the Finnish Navy uses dispersed and wartime infrastructure, which you don’t necessarily want to show on the internet. And while fixed infrastructure likely is known to the adversary, the usage isn’t as easy to judge considering the concealed nature of the archipelago. Space based sensors are one possibility, but they don’t either provide the kind of continuous tracking that AIS creates. Switching it on and off also degrades OPSEC, as it shows when and where a mission has started. Just as when observing a black hole, you can glean things from observing what isn’t there in the same way as observing what actually is visible.

1920px-nagu_kajakmaraton
The Finnish archipelago is a crowded place. Source: Cogitato via Wikimedia Commons

Without having insight in the finer details of how the Finnish Navy bridge crew works, I find it plausible that the report might have a point in that the risks of not being noticed might be underestimated and deserve more attention. However, as the Navy will never be able to maintain OPSEC and spend significant time with the AIS active, the way forward for the Navy is likely to be a bit more proactive with hailing approaching vessels on the VHF and using lights more liberally, as there always will be people on the seas that aren’t quite alert enough.

Another important detail is that as mentioned, in the archipelago as opposed to out on the Atlantic Ocean one can’t assume that all vessels in the area are of the size that they are equipped with AIS. Granted, the pleasure craft traffic is concentrated to good weather days in July, but there’s always the village fanatic who is out with his nets regardless of time of the year and weather. And if you keep a good enough lookout and have adjusted your speed appropriately that you will spot someone kayaking in time to take evasive actions, you will spot a Hamina-class vessel as well, AIS or not.

What about us innocents? – Maritime Defence Day 2019

A year has passed, and for the 19th time the Finnish Navy and Naval Reserve invited a number of stakeholders to come together and discuss all matters related to questions of maritime defence. This year over 80 persons met up at the Naval Academy in Suomenlinna on a rainy Saturday to ponder over questions such as the current state and the future of both the professional and reserve parts of Finnish naval defences, what’s the deal with Russia, and whether the security situation in the Baltic Sea region really has deteriorated?

Sveaborg
The 18th century fortress of Suomenlinna outside of Helsinki is home to the Finnish Naval Academy. Source: Own picture

The answer to the last question was easy, at least if one compare to the post-Cold War world of the 90’s or early 00’s – yes, we are worse off than we were back then. At the same time, ensuring security of supply has never been more important. The answer to this multifaceted challenge is the Pohjanmaa-class, which together with the completely revamped Hamina-class provide the Navy with the ability to operate in two directions simultaneously, and also represents something of the sought after baseline when shipowners judge if they can take the risk of sending their merchant vessels into a high-risk region.

If the Maritime Defence Day earlier years have seen significant discussion on ongoing and upcoming vessel and equipment projects, these were relegated to a secondary role this year. There was a general feeling in the air that the question of “what” has been at least partly solved with the signing of the Pohjanmaa-class contracts and the roll-out of FNS Tornio, and with laws and doctrines providing the “why”, the focus is now on the “how”. The scope of the modernisation the Navy will undergo over the next few years is significant, with e.g. the PTO 2020 (Gabriel) providing a significant increase in capability over the current MTO 85M (RBS 15), and it is clear that the Navy will have to change their ways of operating to get the full benefit of their new capabilities. However, this is not only the case for the individual systems, but the change is even more radical when zooming out and looking at the capabilities on a vessel- or squadron-level. Importantly, the question was raised if the officer corps in general, and the cadets about to enter training in particular, will receive training for the world as it looks today or for the battlefield of 2030? The obvious answer is that there is a need to prepare for the future, but unlearning old habits that once held true but have now turned if not obsolete then at least suboptimal can prove difficult. In the end, all involved need to look themselves in the mirror and ask if they really are preparing for the crisis of tomorrow, or if they just keep doing what they have always done while cruising forward on autopilot.

Coming from the corporate world, I could not help but feel like the concept of Lean is entering the Navy. The Navy has a clear-cut mission, the surveillance of our waters, repelling territorial violations and maritime attacks, and protecting sea lines of communication. Anything that isn’t related to this core mission is a waste of time and precious resources, and this thinking needs to cascade down throughout not only the Navy but the reserve organisations as well. The operational planning needs to drive readiness planning, which in turn needs to drive the plans for unit production, which in turn dictates the exercises held. Gone are the days of voluntary reservists just “going somewhere and doing something”. This also need to take into account local and regional differences, as well as differences between units. If we train the same way in the southern border region as we do in the Archipelago Sea or in the Gulf of Bothnia, we are likely doing something wrong.

Snellman
“The nation should trust only in itself” – illustrative of the Finnish policy of trying to secure allies but always planning for being able to go alone, this decidedly realist slogan decorate the walls of a fortress made possible by foreign subsidies. Source: Own picture

However, while there obviously is waste (to use lean-terminology), there is also much that is good in the system. This includes both the grassroots operations of the L-series of boats by the Naval Reserve and the National Defence Training Association, as well as the high-level refresher exercises. The evacuation of ‘wounded’ by the reservists of the Nyland Brigade was described as an example of the latter, with the scenario apparently running in accordance with the real deal all the way from the battlefield to the field hospital, with the exception of the surgeon not starting to cut into the simulated casualty. “You might imagine the surprise of the wounded when they were asked for permission to practice application of intravenous lines, and in the cases where this was granted they quickly where hooked up to peripheral lines in both hands before they were carried aboard the vessel that took them to the field hospital.” Being married to a physician, I can sympathise (though I’ve never actually had IV-lines)…

Rysky
Janne “Rysky” Riiheläinen, recognised national security authority and communications professional, was back after a few years away from the Maritime Defence Day to discuss security threats in the Baltic Sea region. Source: Own Picture

But what about Russia? Russia is the driver behind much of the instability in the Baltic Sea region. Much of this is apparently driven not only by a desire to recreate any historical grandness or regain superpower status (the latter of which Putin actually has more or less succeeded with despite the poor hand he was dealt), but also by a desire to maintain freedom to maneuver by effectively blocking Western attempts at boxing in Russia (i.e. getting Russia to adhere to international rules and human rights). This takes many forms, including wars in the information and cyber spaces, and relies heavily on the ability of the authoritarian state to take rapid ad hoc-actions to maintain the initiative. The west has tried to answer, but it is unclear to what extent the deterrence work bears fruit, especially as strong political voices are calling for appeasement.

The Baltic Sea is the new divided Germany

With the liberation of Central and Eastern Europe from the Soviet Union, the Baltic Sea region has become the fault line and a stage for provocations. This include issues such as the harassment of merchant shipping, further highlighting the potential vulnerabilities of the supply lines traversing the narrow sea. With the three Baltic countries safely inside NATO, there is always a risk that the countries in the grey zone, Finland and Sweden, will have to provide the real estate for a more or less serious Russian provocation. This naturally raises uncomfortable questions, including the role of the major islands in the Baltic Sea, as well as the vulnerability of the sea-based trade to different kinds of hybrid actions. The issue with Gotland-scenarios (either at Gotland or at another location such as Bornholm or the Åland Islands) have been discussed at great length elsewhere, but suffice to say they can play both a political role as well as provide additional range for the somewhat overhyped Russian A2/AD-bubble (yes, everyone’s favourite FOI-report was mentioned).

For the hybrid scenarios, an emphasis was placed on the use of the market forces to deal serious damage to a country’s maritime infrastructure. Granted you can sink a small freighter in a suitably narrow strategic sea lane, but you can also simply pay the vessels to go somewhere else. If there’s a market demand that pays better than sending your vessels to the Baltic Sea, suddenly the Finnish waters might face a serious shortage of tonnage, even if the supply lines notionally stays open. Globalised ownership patterns also makes questions such as how many vessels fly Finnish flags largely irrelevant, as a foreign owner might quickly change flag if it is felt that operating under Finnish rules might be less than optimal. A similar issue can be seen when it comes to port infrastructure, where key pieces of equipment (including large systems such as cranes), can be owned by stevedoring companies and not the port itself. With these companies then possibly being under international ownership and able to ship out their machinery in a matter of days if they feel they can get more money somewhere else, ownership of the port itself can quickly become a secondary question if the “port” turns out to be just a plot of land with quays and empty warehouses, void of any loading/unloading equipment. In short, cash is still king, and the invisible hand is susceptible to bribery.

Medaljer
The Maritime Defence Day is also a day for recognising individuals who have worked for the benefit of maritime defence in different ways, and this year I found myself among those who received the Naval Reserve Medal of Merit. The medal was also awarded to Ari Caselius of Traficom and Visa Jokelainen of Pelikaanikilta ry. The Naval Reserve Cross of Merit was awarded to Kare Vartiainen of Rannikkotykistökerho Johtorengas ry and Antti Jäntti of Helsingin Reservimeriupseerit ry. Source: Robin Elfving

However, while a crisis below the threshold of war is the more likely scenario if tensions were to flare up in the Baltic Sea region, a full-scale war in the Baltic cannot be ruled out. In that case Sweden would be involved due to it’s strategic location right on the US reinforcement route to the Baltic states. The Finnish situation is less certain, as while Finland sees the 1,300 km border with Russia largely as a liability from a defence point of view, the same is likely the case for Russia, with Kremlin’s appetite for having to divert forces to conduct offensive operations (or even just to hold the line) north of the Gulf of Finland likely being limited. On the other hand, wars have a tendency to escalate according to their own logic, and it is safe to say that a large conflict in the region would have a seriously deteriorating effect on Finnish national security, regardless of whether Finland would be able to stay out of the firing line or not (it can even be argued that trying to stay out of the firing line at any cost might be suboptimal in certain cases). For the Navy, being prepared for all contingencies is paramount, and this is something that clearly is top of mind of the service. Currently the situation is described as “satisfactory”, and with the equipment now being acquired and training being adjusted to meet the demands of the future, it seems set to continue that way.