HX Challenge pt. 3: Head start for Future Growth

The snow finally arrived to central Finland this week, and with it came the last eurocanard to take part in HX Challenge. 39-10, the latest of the pre-production JAS 39E Gripens, touched down on Tampere-Pirkkala airport in a landscape that looked decidedly different compared to the weeks before when the Eurofighter and the Rafale had been visiting.

The 39-10 today at Tampere-Pirkkala AFB, carrying not only the wingtip IRIS-T missiles, but also Meteor very-long range air-to-air missiles and the new EAJP jammer pod. Source: Own picture

Someone that didn’t show up was anyone working at the Swedish embassy in Helsinki, a marked difference from the media days of the other two eurocanards. The reason was simple: “I don’t think anyone doubts that Finland and Sweden has a close bilateral cooperation.” As such the focus was placed on the aircraft instead of the strategic partnership, though the offer was described as being prepared in close cooperation with both the Swedish Air Force and the Swedish Defence Materiel Administration (FMV). This is also crucial, as besides the limited Brazilian order Sweden is so far the only major buyer of the 39E-version. Any Finnish order will rest on how reliable the Swedish long-term (i.e. into the 2060’s) commitment to the 39E as a platform is judged to be.

Saab has decidedly taken the Air Force at their word when they said they want the best capability that can fit inside the budget, with an offer that include not only the 39E/F Gripen, but also the GlobalEye airborne early warning and control platform. As reported last summer the idea behind is that not only does it improve the overall combat capability of the Finnish Air Force, but it also saves the fighter fleet by off-loading part of the missions that would otherwise have been flown by the HX fighters. This not only saves money and airframes, but crucially helps in ensuring a high-level of readiness for the fighter fleet. Anders Carp, head of Saab’s Surveillance business unit explained that they are happy to be able to offer HX “a true force multiplier”, and that he expects the Finnish Air Force to be happy about it as well. Unfortunately, the poker faces of the FinAF colonels present held, so we have to wait until 2021 to see if that is a correct conclusion.

Colonel Keränen, head of the HX Programme, outlining how the programme is continuing. Source: Own picture

However, colonel Keränen in his briefing prior to Saab’s presentation did note that ISTAR is a capability that will be required from the HX-package, and that it is a new capability compared to the current Hornet-fleet. This is interesting in that it shows that the capability sought is something more than what the Hornet currently offer by flying around with their AN/APG-73 radars and Litening-targeting pods. Here the GlobalEye really shines, as it not only provides a superior air-to-air picture (especially against targets operating at low heights) compared to the current Finnish ground-based network, but also provide air-to-surface radar pictures and signal intelligence from passive sensors. The range of sensors, both passive EW-sensors and possible EO/IR-sensors, can be tailored towards the specifications of the customer. However, in general it could be noted that the aircraft would not only be a valuable sensor in wartime, but would provide a serious benefit in peacetime as well through its ability to gather information far beyond the Finnish borders. As such, it would complement the Air Force’s single C-295 SIGINT-aircraft and the Border Guards’ maritime patrol aircraft.

Magnus Skogberg discussing the vast range of the GlobalEye’s sensors, describing the aircraft as a “substantial contribution to the joint operational capabilities of the Finnish Defence Forces”. Source: Own picture

For the Gripen, much of the focus was on the adaptability and electronic warfare side of things. The differentiation of flight critical software, and to some extent hardware as well, from the mission software ensures that it can be upgraded in short increments, avoiding the traditional larger but less frequent MLUs. This is incremental upgrade approach is in effect already now with the current 39C/D-fleet, but the steps would take place in even shorter increments for the 39E/F. “This is unique”, according to Saab, who also pointed out that when the first 39E flew, it did so with a fully certified software. This is also exploited in the form of the 39-7 two-seat aircraft demonstrating the capabilities of the 39F for HX Challenge. The aircraft has a full set of 39E/F mission systems in the backseat, while the flight control software is based on that of the 39C/D.

When faced with the question of how the aircraft that currently is in the test and verification phase, Saab’s view was that since the aircraft is mature enough and will meet the Finnish deadlines with time to spare, it’s recent appearance on the market is simply a benefit. Being the newest of the contenders ensure that the technology is new, and allow the company to take advantage of the latest developments in a way older platforms can’t.

I guess you can make the arguement that the glass is half full.

The smart fighter – now in Finnish as well. Source: Own picture

For the electronic warfare side, according to Saab the aircraft is providing capabilities close to those of dedicated platforms (read: EA-18G Growler). It is “probably the most advanced EW-suite” carried by a fighter, and provide a full spherical coverage from all directions. This include not only missile approach warning systems, but also internal jammers, chaff/flare dispensers, and so forth. When that isn’t enough, the brand new Electronic Attack Jammer Pod (EAJP) can also be carried, a fully functioning version of which was carried by 39-10 in Tampere. At this point, Saab notes that the 39F does provide superior performance in the electronic warfare (and SEAD/DEAD) role, as the combined suite is powerful enough that to get out the maximum use of it a dedicated systems operator is needed.

The EAJP is utilising some of the “same kind of technology” as found in the internal EW systems of 39E, but provide broader frequency ranges and more power when needed. Source: Own picture

While electronic warfare capabilities are difficult to judge based on open sources (we are basically left to trusting that the manufacturers don’t stretch the truth too much) one thing that Saab is sure to have in their favour is the solid presence on the ground in Finland. Saab already has a serious research and development unit in Tampere, the importance of which is set to grow in the coming years thanks to Saab receiving the contract for the combat management system of the Pohjanmaa-class. As such, they are well positioned to reach the stated 30% of contract value in industrial cooperation, the vast majority of which will be directed towards direct cooperation according to the company. The program is very ambitious, and in what is something of a surprise still include not only component manufacturing and final assembly of the aircraft, but of the engines as well. Granted most manufacturers stated that a domestic final assembly line was possible at the outset of the HX programme, but there has been relatively little talk of the topic since, and my impression has been that the interest towards the idea from both the manufacturers and Finnish industry have in fact been lukewarm.

Saab is of a different opinion, and stated that it is the best method of ensuring that Finland actually has the ability to overhaul and maintain the aircraft if the supply lines are cut (which is the requirement of the RFQ). Production of aircraft engines is something that hasn’t taken place in Finland for a long time, but Saab expressed confidence in that Patria’s Linnavuori plant is up to the job. Negotiations are currently ongoing regarding the details of the proposal, and the fact that the Hornet’s F404 engine (on which Patria does qualified maintenance) serve as the basis for the Gripen’s F414GE would probably aid in the transition.

Speaking of transitions, Saab stated that the Gripen would require only “minor adaptations” of the existing infrastructure, and that they foresee a “very smooth integration effort”. A key point was also that no additional noise pollution or environmental impact was expected relative to the legacy-Hornet fleet, an issue that has been highlighted as some other fighter acquisitions has created the need for expensive remodelling of air bases. Here one might note that colonel Keränen also provided some further details on the timeline for the transition. By 2025 the first deliveries are to take place, so that Finnish Air Force personnel can start training on the aircraft. This might take place abroad or in Finland, key point is that the training starts, because by late 2027 the IOC should be declared, with the first HX squadron replacing a Hornet squadron in early 2028. By 2030 the last Hornets leave Finnish service, and HX declare FOC. Notable here is that up until IOC, the training and operating costs of the HX will at least partly come from the 10 Bn Euro additional funding that is allocated for the acquisition. This is due to the fact that normal Hornet operations continue in parallel, and the funds for these will claim the Air Force’s daily operating budget.

But did it fly? No, it didn’t. Was there a perfectly reasonable explanation. Yes, there was.

39-10 didn’t leave Sweden for the first time ever just to impress Finnish (and international) media, but rather to run a verification program. As the Finnish Air Force has stated a number of times, this isn’t about cold weather tests, but verifying the numbers and capabilities provided by the manufacturers in a Finnish setting. The weather conditions did not match any of the planned verification sorties, so the aircraft stayed on the ground. GlobalEye on the other hand had suitable verification flights that could take place, so it appeared in the skies over southern Finland with a mixed Saab/Finnish Air Force crew aboard.

Being a mechanical engineer I saw nothing strange in this. In my earlier work I’ve been present when the weather has been either too good or too bad for planned sea trials. Then the boat stays in the harbour. Not because of the vessel in question isn’t able to go to sea, but because the only thing you would achieve by doing so is burn diesel and kill time. Granted it would have been nice to get to see the aircraft take-off today, but c’est la vie.

However, populists gonna populist. Self-proclaimed defender of Lapland (with friends like these…) Mikko Kärnä in a single tweet manages to 1) describe the purpose of HX Challenge incorrectly, 2) give false (or at least out of context) quote by Saab as to the reason for not flying, and 3) draw faulty conclusions based on those two incorrect statements. Unfortunately, the story about Gripen not being able to fly in snow will likely endure in some fringes of the Finnish political discussion. The influence long-term will likely be minor, but I can already feel how tiresome it will be to hear these talking points making rounds on social media and around coffee tables.

For those interested in whether the Gripen can fly in snow, just ask Antti Virolainen.

Russian A2/AD: Overrated, underrated, *and* poorly understood

Quite a few readers will likely make the connection between the headline and a recent post by Michael Kofman over at his Russian Military Analysis blog. The post, titled “Russian A2/AD: It is not overrated, just poorly understood”, has received quite a bit of both praise and pushback in the few days since it was published, and certainly deserve a closer look.

To begin with, last autumn Kofman published a long read over at War on the Rocks. Titled “It’s time to talk about A2/AD: Rethinking the Russian Military Challenge”, it was without doubt one of last year’s best texts on the topic. I recommend anyone not familiar with it to go over there and read it, as it gives a very good overview of why the adoption of terminology originally dealing with a Chinese concept of operations and inserting it into an unrelated Russian context will lead us deep into the land of wrong conclusions. It also details well how the Russian long-range systems fit into the Russian operational concept.

A 9A83 TELAR of the S-300V system operated by the 202nd Air Defence Brigade. The unit is co-located with the 4th Guards Kantemirovskaya Armoured Division in Naro-Fominsk outside Moscow. The system a good example of a high-end capability found within the Russian Ground Forces structure, as opposed to the VKS/V PVO PRO. Source: Vitaly V. Kuzmin via Wikimedia Commons

“Russian A2/AD: It is not overrated, just poorly understood” instead looks at the question on a tactical level, and takes issue with what Kofman describes as “technology fetishism and threat inflationism [seemingly] giving way to a dismissive attitude”. There often exist a very real possibility of overcompensating when the first wave of panic-induced threat inflationism is receding, but I am not quite convinced that is what is happening here. Before starting, it should also be pointed out that whenever discussing the “general consensus” or “the discussion” as I do here, it can easily qualify as debating a strawman, since the average opinion, much as the average person, doesn’t exist.

There are several valid points in Kofman’s piece, perhaps the most important of which is that the focus on the strategic long-range systems* of the Aerospace Forces (VKS), which control the Air and Missile Defence Troops (V PVO PRO), leave out a sizeable number of Russian Air Defence assets. This include not only the Russian Air Force, but also the vast number of air defence systems of all kinds and ranges, some of which are very capable, that are subordinated to the Russian Ground Forces’ air defence units (PVO-SV). Another issue is whether Russia in a conventional war against NATO really would think in terms of a limited war, or whether the smallest size would be something along the lines of a conflict stretching along the full span of Russia’s western land border. Perhaps the most important point raised is the importance of discussing how well the Russian systems would work in a Western setting. As was evident especially during the post-Cold War thaw of the 1990’s when Russia shared the thinking behind their weapons programs more openly (though it frankly should have been evident both before and after), the Russian concept of operations differs from NATO’s CONOPS. This in turn means that their development and procurement decision are driven towards solutions that might seem strange or underperfoming in a Western context, but match the requirements of the Russian Armed Forces (ask yourself where all the Russian targeting pods are, just to give one brief example).

However, other issues raised by Kofman aren’t quite as clear-cut in my opinion. Yes, the Russian Air Force did receive 402 new tactical fighters and strike aircraft between 2008 and the end of 2019 (88 of which were Su-35 and 125 of which were Su-34). However, that ten-year run can be contrasted to the deliveries of 134 F-35 in 2019 alone (a year in which the Russian Air Force received 20 new fast jets), with another 140+ planned for next year, not to mention the production figures of other western fighter programs currently running. It should also be noted that the Russian Air Force of 2008 was sorely outdated, and that the aircraft since delivered, while modern, dosen’t necessarily provide the Russian Air Force with a qualitative edge compared to the current western inventory. Big questions surround the Russian fighters when it comes to key areas such as sensor fusion and man-machine interfaces, two fields that have grown in importance over the last decade with the increased amount of information available to the pilots.

The most serious issue for the Russian Air Force however is their weapons. For decades nothing much happened in the field, to the extent that the main air-to-air weapons still are the R-27 family of medium-range and the R-73 short-range missiles, both of which entered service well before the end of the Cold War. The situation is so dire that when the Russian Air Force first went to Syria, they had to resort to the ‘export-only’ RVV-SD to get a medium-ranged missile with an active radar seeker. Deliveries of updated weapons such as the R-77-1 (on which the RVV-SD is based) and the R-74M have now started (though the R-74M is still somewhat uncertain as far as I am aware), but it will take time until they have become the standard load of the fighters.

For air-to-ground, a more or less similar situation exists, not aided by the fact that Russian ‘dumb’ bombs aren’t easily kitable to become smart due to their general construction. The most common air-to-surface missile is the laser-guided Kh-25ML, a weapon with a 10 km range that was in production between 1982 and 1997. Several other air-to-ground systems exist, in fact the Russian arsenal include more diverse weapons/seeker capabilities than the NATO air forces, but the numbers for modern systems are generally low.

This is not to suggest that the air component of a NATO-Russian clash would be easy, especially once considering the possibility of preemptive strikes against NATO air bases and the low stocks of weapons held by the western air forces. It certainly would be a complex and messy affair, of which the SEAD/DEAD mission would be just one aspect.

EA-18G Wingfold

While much has been written about the Russian focus on electronic warfare, there are still a number of very capable platforms in the west as well. The EA-18G Growler would be a key asset in any US air campaign within the foreseeable future that was faced with modern air defences. Source: Own picture

I do agree that the greatest benefit of ground-based air defences often aren’t their kinetic capabilities, but the fact that their presence on the battlefield causes the enemy to alter tactics and divert resources to managing the threat from these long range systems (or, as Kofman put it, they become McGuffins). There is an inherent value in these systems, but the question is if we haven’t left A2/AD territory a long time ago by this point, and are back to the issue of how to pick apart a multi-layered air defence system made up of multiple components, all with their own strengths and weaknesses. This in itself is nothing new, Vietnam and the Yom Kippur War are probably the two most well-known examples, both in part due to the seemingly superior air force suffering serious losses when trying to get around one kind of threat and running into another one. However, it should be pointed out that the examples to the contrary are also found. The Lebanon War of 1982 and Operation Desert Storm both saw seemingly robust integrated air defence systems supported by serious fighter and interceptor components destroyed with fairly limited losses.

How the Russian air defences stand up against a concentrated air offensive is anyone’s guess. One of the key questions is who really dominates the electronic warfare spectrum? The Russian capabilities have been on test in Ukraine and Syria, but while the focus in west can be said to have been elsewhere during the post-9/11 period, there is still several capable systems and platforms in operational service. The effect they would have on the modular structure of the high-end Russian air defence assets is one of the key unanswered questions.

In the end, if I would have to guess, I find the high-end Russian systems such as the S-400 to likely be overrated. The same goes for the capabilities of active seekers of individual missiles, especially as their ranges grow. The medium-range systems such as the latest versions of the Buk and the Tor, are likely underrated, due to their combination of being easier to hide while still packing a serious punch. The whole A2/AD bastion concept makes little sense for most of Russia (the Murmansk area being the exception). What is completely open to me is how modular the Russian ground-based air defences really are, and how robust this modularity is in the face of a squadron of Growlers. In general, it can also be noted that history hasn’t been kind to ground controlled intercept-based tactics post-WWII.

*These are the S-300PM1 and S-300PM2, S-400, and their close-defence 96K6 Pantsir-systems, as well as the A-135 anti-ballistic missile system defending Moscow.

HX Challenge pt. 2: Born Joint

When two French fighters landed at Tampere-Pirkkala AFB this week it was the underdog that arrived. While last week’s eurocanard might not be a favourite, the Rafale is an even less likely candidate according to most analysts.

But truth be told it is difficult to tell how much of that perception is based on the lack of an active marketing campaign compared to the rest of the competition. The HX process might have received international praise for its transparency, but that only extends to how the process is being run, and not how the contenders are doing. The current ranking, to the extent there is one at this stage, is well and truly hidden from view.

© Dassault Aviation - A. Pecchi
Rafale B ‘301’, DGA’s and Dassault’s testbed, shown here airborne during earlier tests. The aircraft carries six AASM boosted precision-guided bombs, two Meteor very-long range air-to-air missiles, two MICA IR short-range air-to-air missiles, two large drop tanks, and a Talios targeting and reconnaissance pod. Picture courtesy of © Dassault Aviation – A. Pecchi

The fact that the two Rafales touched down on Pirkkala does however tell us something – Dassault still thinks they have a non-trivial chance of winning. Flight tests are expensive, even a moderate estimate puts the costs for a manufacturer to participate in HX Challenge at something like 1.5 million Euro (it could easily be double that even in direct costs). The fact that Dassault, and the rest, are coming shows they believe the potential benefits to be worth it. This is in stark contrast to most of the recent fighter competitions held in Europe (Denmark, Norway, Belgium, Switzerland…), where roughly half the field have usually dropped out before final offers are sent in. That is a big show of confidence in the fairness of HX, and big kudos to the MoD, LOGL, and the Air Force for that!

Ilmavoimat Rafale Joni Malkamäki Challenge 2
Rafale B ‘301’ (rear) and ‘352’ (front). The reason why Dassault didn’t bring a single-seat C-version was to maximise the number of flight hours they are able to provide to Finnish Air Force personnel, but is also a testimony to how closely related the B and C models are to each other. Note the white bulge behind the blade antenna on ‘301’, likely associated with some F4-standard subsystem, the missile warning sensor on the tailfin (looking like a black dot), and the different coloured covers for the EW sensors on the front of the canard root and on the air intakes. Source: Joni Malkamäki/Ilmavoimat

But back to the French offer. Many of the themes can be recognised from last week. The Rafale would “protect Finland’s integrity”, further strengthen a strong European partnership, and the aircraft is being offered “with the full support of the French government”, to use the words of ambassador Serge Tomas. The aircraft would also be delivered with “no performance restrictions” compared to the French version, and there will be “lots of open books” and technology transfers.

But there were also notable differences in tone when compared to the Eurofighter. The production lines will stay open “for the next decades”, as opposed to the Eurofighter lines that are slowly cooling down. And while the Eurofighter is being sold as the great cooperative project, the French are well-known in security policy circles for their reluctance to trust in others. This is also what they are selling to the Finnish Air Force.

We understand your concept

Those simple words contain a lot. We know you don’t trust in allies to step in and save the day, we understand your wish to be able to go alone if the need arises. The Rafale is the tool that allows you to do so.

French and Finnish national security policy might not have much in common, but Dassault certainly has found the common denominators there are, and they are running with them.

A sobering reminder of just how ready to go alone France is found in the fact that one of the two Rafales currently in Tampere is an operational Rafale B F3R from SPA 81 Lévrier (Greyhound) of EC 2/4 La Fayette. The main mission of the unit is nuclear strike as part of the Forces aériennes stratégiques, the land based air component of France’s completely independent nuclear deterrent. However, like sister unit EC 1/4 Gascogne, they do also fly conventional missions, including operationally over Libya, Mali, and in the Middle East. The F3R is the current standard, and was delivered ahead of schedule, meeting performance targets while staying inside the budget. Any Finnish order would be of the F4 standard that is currently in development, and which has an added focus on connectivity, further developed electronic-warfare capabilities, as well as new weapons. The other Rafale, ‘301’, is a joint-DGA and Dassault testbed, and is equipped with numerous subsystems associated with the F4.

The F4, and the upcoming F5 standard, will also allow the Rafale to remain a key part of the FCAS-system, ensuring that the Rafale stays in French service well into 2060’s*.

Ilmavoimat Rafale Joni Malkamäki Challenge
Rafale B ‘352’ 4-FU having just arrived at Tampere-Pirkkala AFB. Note the greyhound of SPA 81 on the tail, Talios pod on the right side of the fuselage, FSO bulges in front of the canopy, as well as wingtip MICA IR missiles. Source: Joni Malkamäki/Ilmavoimat

Another good example of where French and Finnish national security interests align, and one pushed heavily at yesterday’s media day, is the emphasis on European solidarity. “France is leading the process to build a solid, European defence policy,” as ambassador Serge expressed it. This was also the point he came back to when questioned about what France can offer on the national security side that the other eurocanards cannot, and he does have a point. Finland’s stance on Article 42.7 might be ambiguous (and set to remain that way for the foreseeable future), but Finland most certainly is interested in a deepening European defence cooperation in a way that few other countries are. Except France.

It is a strange world when the country that has given us the gilet jaunes can market themselves as “the reliable and predictable national security partner”, but this is where we are in 2020. In part this is also due to the difference in French domestic and foreign politics. While French internal matters might be seeing quite a bit of turmoil, their foreign policy has been remarkably consistent during the last few decades. And that policy include a willingness to mobilise the sizeable force that is the French military whenever French interests are threatened. This is not only seen in Syria and Libya, but also in Mali and, crucially, in how France has stepped up their presence in the Baltic Sea region following Crimea. This includes ground troops, but also a sizeable contribution to Baltic Air Policing. The trick then is to ensure that French interests align with ours, something that is easier said than done. However, I would like to note that we are rapidly approaching diminishing returns in our already very deep cooperation with Sweden and the USA, something that isn’t the case for the Finnish-French relationship.

Ilmavoimat FB Rafale
It apparently needs to be repeated: HX Challenge is not a cold-weather test, but a verification of sensor and other prestanda as reported by the manufacturer. As a matter of fact, ‘301’ did separate winter tests for Dassault a year ago at Rovaniemi AFB. Source: Ilmavoimat FB

The French willingness to act on their security interests in turns leads to the next point that Dassault likes to make, namely that the Rafale is combat proven. Crucially, this isn’t just about dropping bombs in COIN operations, but include having “been tasked to go into very contested environments”. Famously, Rafale did fly missions into Libya during the early stages of the campaign when Gaddafi’s air defences were still operational, and it has also performed missions over Syria in the face of the air defences found there. The weapons suite used is also interesting, as not only does it feature the same cruise missile as the Eurofighter, the MBDA Storm Shadow/SCALP, but it also sports the unique French AASM-family of boosted precision-guided bombs. These allow for stand-off range attacks (60 km range reportedly being “not too far from the truth“, but obviously depending on launch height and speed), and come with a number of different seeker heads including INS/GPS, INS/GPS/IR, and INS/GPS/laser. As such, the Rafale is well-equipped to take out any of the targets envisioned in the Finnish RFQ.

© Dassault Aviation - K. Tokunaga
A single-seat Rafale C of 1/7 Provence in air-to-air configuration at BA 113 Saint-Dizier-Robinson, that also happens to be the home of the 1/4 La Fayette. Picture courtesy of © Dassault Aviation – K. Tokunaga

Traditionally one of the weaker parts of Rafale’s sensor suite has been the Damocles targeting pod. This was recognised as lagging behind the competition already a number of years ago, and the Thales Talios has been brought online as part of the F3R standard. The performance of the pod, capable of both reconnaissance and lasing, is likely one of the things that the Finnish Air Force will be eager to test. Unfortunately the huge AREOS strategic reconnaissance pod has not been brought to HX Challenge (at least not by air), which likely indicate that it isn’t being included in the offer at this stage. Unsurprising, but still a bit sad as it would have offered a really interesting step-change in capability. Another sensor that likely will attract a lot of attention as well is the Front Sector Optronics, the FSO. The FSO is made up of two modules, an IR- and a TV-sensor. As part of the F3/F3R program the TV-sensor has been upgraded, and the performance is rumoured to be very good thanks to high magnification and near-IR wavelengths. The IR-sensor is currently going through its update programme, but for the time being it is likely that the setup tested at HX Challenge feature the old IR-sensors. In addition, a laser rangefinder is also included, and the whole set can be slewed by the other active or passive sensors to find and identify an airborne target. This is in line with the Rafale putting great emphasise on passive intercepts of enemy targets through the use of several different passive sensors and fusing the data to present the air crew with a single threat picture. Whether it works in the cloudy skies of Finland is exactly the kind of question HX Challenge is designed to answer, and unfortunately this interesting answer will go straight into the folder marked “SECRET”.

*Often the FCAS designation is erroneously used for the new joint Franco-German fighter currently in development, while in fact the FCAS is an umbrella term to cover numerous air- and ground-based system making up the Future Combat Air System. Or as Airbus puts it, a system of systems “composed of connected, manned and unmanned air platforms, enhanced by different sensors and effectors. They will be part of an open, scalable system architecture that enables the inclusion of future platforms and new technologies”

2019 in Review

As has become my own little tradition, I publish my year in review on the blog on the anniversary of the first post and not around the new year. Today’s that day, so happy sixth anniversary to myself!

2019 was in many a challenging year for me personally, but the end of the year also saw me come up with a clear plan for how to move forward from here. Without going into details, I am currently in a much better place than I was a year ago.

Naturally this also had some effects on the frequency of my blogging, which declined compared to year before. The year was also the first that the annual readership declined, both measured in views and visitors. The key reason is quite easy to find, as while the baseline is still healthy (the monthly median was actually higher in 2019 than 2018), the year lacked the kind of single hit post that has given the blog a boost earlier years by drawing in people from outside the regular readership. To look at things from the bright side: as these usually are tied to some less than pleasant development in the region (such as the Airiston Helmi-case of 2018 or the earlier sub-hunts), it isn’t just a bad thing that last year’s month-to-month viewership was more stable than earlier year.

2019 was also the year I tried to monetize the blog by running generic adds on it. Let’s just say I’m not thrilled about the cost/reward ratio, but I have yet to decide if I will continue with them or take them down again.

Visiting AMBLE Baltic and seeing the first public outing of the APVT was one of the high point of the Corporal Frisk-year of 2019! Source: Own picture

As for who the readers are and where they come from, there’s no major surprises. Search engines and Twitter still dominate the referrer-stats, with the largest forums being Finnish Maanpuolustus.net and Estonian Militaar.net, with Swedish SoldF.com coming in as third. A newcomer was Hungarian HTKA.hu, which was a pleasant surprise to see! Land topics seems to be of particular interest to our Hungarian friends. As for where people read Corporalfrisk.com, Finland and Sweden are unexpectedly in a class of their own (with Finland being largest by a healthy margin this year), followed by the USA, the UK, Norway, France, Germany, Canada, and Australia in that order.

The most popular new post of 2019 was The True Face of the Baltic Fleet, which despite being published in the later half of the year got quite a nice readership. HX in general and GlobalEye in particular was another very popular topic, and of the older posts Gabriel 5 (PTO 2020) did very well. A number of interesting trips also fit into my calendar last year, including going back to Germany for the first time in a decade when I visited the first ever AMBLE, getting to speak at the FOI workshop on Russian A2/AD capabilities in the Baltic Sea region in Stockholm in December (proceedings should be out soon!), and finally receiving the Naval Reserve Medal of Merit at the Finnish Naval Academy during the Maritime Defence Day held there.

For 2020, the focus of the next few weeks will obviously be on HX Challenge. Unfortunately, with Corporal Frisk being just a sideshow, I won’t be able to skip work for all five media days, but I will attend one or possibly two in person, and will obviously report on any new (or not so new) details that emerge from the rest of them as well. Next up is Rafale, and it will be really interesting to see what message they bring! Following that, HX is likely to be on the back burner for the next year and a half, as few major twists are expected to take place before the eventual announcement of the winner in 2021. However, that doesn’t mean that the blog will be empty, as there are quite a few other interesting projects in the pipeline that I hope to be able to share with you all during the first half of the year, most of which are naval related.

As always, a big thank you to all of you readers! You are what make this blog! Oh, and did seriously no-one of you (especially you Swedes) catch the Easter egg in Weapons & Ammunition?


HX Challenge pt. 1: Complete Independence

HX Challenge kicked off for real this week, with the Eurofighter Typhoon being the first contender (the sales team uses the Eurofighter designation, but I sincerely hope any Finnish buy would include us switching the British name. One possibility I might accept is translating it to Pyörremyrsky).

The Eurofighter Typhoon FGR.4 of the RAF’s No. 41 Squadron (with the awesome motto of Seek and Destroy) takes off from Tampere-Pirkkala airport. As part of the same launch the T.3 got airborne with a Finnish Air Force backseater. Picture courtesy of BAE Systems/Kalle Parkkinen

Did we learn anything groundbreaking yesterday? Not really, but the media day did provide a comprehensive insight into what the consortium in general and BAE Systems in particular believe is their strong cards in a competition that is steadily moving towards the contract announcement next year.

The key word is “independence”. You buy it, you own it, and you decide exactly how you want to use it. These are notions repeated throughout the press material and briefings, and it is clear that they are aimed at differentiating the European project against the US competitors. The Eurofighter is described as providing an “unique opportunity” when it comes to taking control of the country’s security. The “no closed black boxes”-policy provides the ability to independently operate, maintain, and control the aircraft, also when it comes to questions such as mission data and upgrade paths. Full control of mission data is described (in the Finnish press release) as “indispensable” for operating a modern combat aircraft, and something that provide an information advantage that will only become more important as time goes*.

However, this should not be interpreted as BAE Systems pushing the “buy second best but get full control”-line. The aircraft is described as being the “most advanced multi-role aircraft on the market”, with the potential Finnish aircraft being given as ‘Tranche 4’-standard, i.e. one notch above anything produced up until this point. This is roughly the same configuration as the German order under Project Quadriga, importantly sporting the E-Scan Mk. 1 AESA radar, an upgrade compared to the Kuwaiti-standard featuring the export Mk. 1A. Another interesting detail when it comes to sensors is that of the two Eurofighters taking part in HX Challenge, a single-seat FGR.4 and a twin-seat T.3, one carried the current standard Litening 3 pod, while the other had the brand new Litening 5 which is currently on offer to Germany and expected to be acquired by RAF in the near future. The Litening 5 is also offered in an updated version with a synthetic aperture radar (SAR) integrated into the body of the otherwise electro-optical targeting and reconnaissance-pod. As a side-note, the Finnish Hornets received the most advanced version of the Litening II, the Litening AT, as part of their MLU2-upgrade.

To further emphasise the pan-European aspect of the Eurofighter project, all of the partner nations embassies were represented at the media day. It also clearly shows the big advantage in the number of significant operators the aircraft enjoys over the competition (with the exception of the F-35A) in this regard. Left to right: Luis Garcia Lumbreras, of the Spanish Embassy in Finland, Hans Werner Koeppel, of the Germany Embassy in Finland, Tom Dodd, British Ambassador to Finland, and Gabriele Altana, Italian Ambassador to Finland. Picture courtesy of BAE Systems

When it comes to weapons, the Eurofighters in Tampere-Pirkkala came equipped with ASRAAM short-range air-to-air missiles. Interestingly enough, the short-range air-to-air capability is not amongst the weapon systems described as ‘best-in-class’ in the press release. Instead, the weapon suite is described as offering “the widest range of weapons in the HX competition”, with beyond visual range air-to-air, deep strike, and high precision air-to-surface capabilities being best-in-class. It’s easy to see the close cooperation with MBDA playing a role here, as the weapons alluded to are the company’s Meteor, Storm Shadow, and Brimstone/SPEAR 3 respectively. The claim certainly seems tailored to meet the Finnish focus on the air-to-air role as well as deep strike, and while it is marketing, it is difficult to find weapons currently on the market that based on open sources can be stated to be objectively superior to the Meteor and the Storm Shadow, with the Brimstone and SPEAR 3 lacking direct competitors in most western arsenals.

But the HX Challenge isn’t just about flying around and punching holes in the air, a key part of the testing is the performance on the ground. This include not only studying how the aircraft function when the temperature is hovering around the freezing point, e.g. whether moisture getting into small crevices and freezing there will break stuff, but also what happens when the maintenance takes place outdoors or when the runway isn’t nice and dry (Finavia is cooperating with the evaluation by not maintaining the runways to their usual standard to simulate winter operations from dispersed bases). In fact, the ground testing will likely be more revealing than the air sorties, which in essence should only confirm data received in the offer and already verified in laboratory conditions.

RS86241_Typhoon snow pic
Three Italian Eurofighters during their Icelandic Air Policing rotation last year. Picture courtesy of BAE Systems

It is no surprise then that BAE Systems has also answered to this requirement, emphasising the robustness of the aircraft and the ease of maintaining it in similar conditions, such as during the Italian Air Force rotation to the Icelandic Air Policing mission and the RAF detachment operating in the Falklands. In Iceland the aircraft encountered exactly the kind of low temperature and wet conditions that the Finnish Air Force is interested in, and still were able to launch for all available missions. The squadron commander attributed this to the professionalism of the maintenance crews, as well as the fact that the aircraft is “very simple to maintain”.

The impact Tempest and FCAS will have on the development path still hangs as a cloud over the Eurofighter, regardless of promises that it will continue to be upgraded into the 2060’s. Still, the large number of operators gives the promise more credibility compared to corresponding promises by the other two eurocanards. With TyTAN going smoothly, the consortium is also confident enough that they have declared the cost of acquiring the aircraft to be “fixed and affordable”, going as far as stating the aircraft to be “the world’s most cost-efficient multi-role fighter”. The marketing plan seems simple enough – the Eurofighter is already here and working, it would increase Finnish cooperation with most of the major European security players, it allows fully independent planning of operations, upgrade paths, and maintenance (looking at you, F-35), and comes with a serious package of industrial cooperation benefits that would give Finnish aerospace and defence companies ample opportunities of cooperation with their European peers. How much of these talking points is backed up by real world prestanda is an open question, and one to be decided over the next twelve months.

The game just got serious.

*Interestingly, the information advantage-point is only found in the English version of the press release, and not in the Finnish one

Unmanned Underwater Vehicle in the defence of the Gulf of Finland

The videoclip below is interesting.

At the 1:57 time stamp, the Finnish Navy is seen launching one of the world’s most advanced autonomous weapons systems in its class. Having been deployed, it slips below the surface where it will lay in wait. Silent. Deadly. Not giving away its presence in any way, but constantly monitoring its surroundings. Waiting. Every movement is registered, and evaluated against the profiles stored in its database. And once there’s a match, it strikes, mercilessly.

I am obviously referring to the Finnish Navy’s PM16 (fi. Pohjamiina for bottom mine, confusingly enough a designation also used for the Finnish Army’s sensor-fused anti-tank mines), the newest addition to the Finnish family of influence mines that started with the PM90, and has since seen the addition of both the PM04 and the PM16 visible above (the PM90 has also been updated to PM90MOD status with an all-new “brain” and sensor-suite). In addition, the Navy has operated British Stonefish (as the PM-85E) and two different kinds of Soviet mines as the PM83-1 and PM83-2 (possibly the MDM-4 and UDM), though these are likely retired by now. Mines are seen as a strategic threshold capability in Finnish doctrine. They can seal off the chokepoints an aggressor needs to enter Finnish territory from the sea, and they will cause significant stress for anyone forced to operate within areas potentially mined. The very shallow nature of both the Gulf of Finland as well as the Archipelago Sea also lend themselves well to both traditional moored mines as well as influence mines. Obviously, history has also shown that in case war would break out, mines can be used to seal of the Gulf of Finland completely. This would make it impossible for vessels to transit between the Russian Baltic Fleet’s main base Baltiysk in Kaliningrad and the Russian mainland, and isolating St Petersburg from the Baltic Sea.

The influence mine is usually not included in discussions regarding autonomous weapons, though there really is no reason why it shouldn’t. After all, it is a system that does all decision making completely on its own once it is released into the wild, with no human in or on the loop. However, the main issue with the mines is that they do not move*, and once a minefield is cleared that area is free to use**. Wouldn’t it be even better if the weapon could move around, suddenly appear in areas previously thought of as safe, or quickly be despatched to areas where control over an area protected by a minefield has been lost?

The original artwork of H I Sutton’s XLUUV concept. Picture courtesy of H I Sutton/Covert Shores

Naval analyst H I Sutton presented an interesting concept on his homepage recently. In short, he asked himself why the concept of operations for the Iranian Ghadir-class of midget submarines – stay hidden close to shipping lanes, wait for surface targets, and then torpedo them – couldn’t conceivably be automated. Wouldn’t an extra-large unmanned underwater vehicle in the class of the US Navy’s Orca-program be a good fit for the mission. Most XLUUVs at the moment are designed for modularity and the possibility of taking up a number of different roles. By focusing on the single relatively straightforward mission of ambushing surface vessels, the complexity and cost becomes lower (to get a feeling for the costs, the current Orca-program has seen Boeing bag a recent order “for the fabrication, test, and delivery of four Orca” worth 43 million USD, following on a roughly equally large contract covering the design phase of the competition).

The XLUUV envisioned by Sutton would sport air-independent propulsion in the form of a stirling engine, and two pre-loaded 533 mm torpedo tubes would provide the sting. An endurance in excess of a week could be achieved, and further cost-savings could be had by restricting the requirements when it comes to performance, including max-depth.

It is easy to see how beneficial a system such as that described by Sutton could be for Finland. A handful of vessels could easily cover the Finnish coastline, and they would be at their strongest outside of the archipelago, a place where the Finnish Navy prefers to spend a relatively limited part of their time. It is also easy to see the value of a remote sensor function where the XLUUVs occasionally send back particularly interesting sensor tracks to the mainland, though this naturally has to be balanced against the value of staying completely silent.

However, it is also easy to see why the Finnish Navy likely won’t pursue this line of development. The Gulf of Finland is shallow enough that more or less any part of it, including the open waters, can likely by mined with bottom mines (and in any case traditional moored mines remain in use as well), and as has been discussed earlier the narrow straight means that any vessel moving in the open waters will be spotted and could be targeted by both artillery and land-based anti-ship missiles. As noted earlier, what the XLUUV option would bring to the Gulf of Finland would not be so much the capability to close of the gulf, that is already possible, but to do so with systems that are extremely difficult to track and take out. The relatively limited firepower of two tubes would also mean that the main threat of any single vessel would be in the psychological realm rather than purely kinetic capability (though considering the limited number of vessels in the Russian Baltic Fleet, XLUUVs that only strike once they match the profile of e.g. LSTs would present a serious headache for the aggressor).

Echo Voyager
The 15.5 meter long Echo Voyager is the basis for Boeing’s Orca XLUUV. Note the worker standing on the platform behind the vessel, providing scale. Source: Picture courtesy of Boeing

Another question is whether they actually might hold more use in the ASW role, as getting the sensors and weapons for the mission out to open waters without taking undue risks is something of an issue currently. This could also see a step-down to tube-launched 400 mm torpedoes (something the Swedish submarines currently use), making room for a larger number of torpedoes. The choice of only attacking underwater targets would also ensure a significantly smaller risk of collateral damage, something that certainly would aid in public acceptance of the system. Because let’s face it: it might be argued to be intellectually dishonest as I did at the start of this text, but the general public stills sees the sea mine as an explosive round and an autonomous XLUUV as a ‘killer robot’. Any procurement of the latter will first have to overcome this political hurdle.

* There are obviously self-propelled mines, combining the features of the torpedo and sea mine (somewhat ironically, as the term “torpedo” originally referred to mines, with today’s torpedoes being “self-propelled torpedoes”). Saab and Naval Group are both working on development projects aimed at producing modern solutions blurring the torpedo/UUV/mine definitions

** This is only true as long as the area really is clear, something that has proven to be surprisingly difficult to validate. Solutions such as the JDAM-ER with Quickstrike could also quickly change the situation, with e.g. two Super Hornets being able to swiftly put sixteen 450 kg mines on individual pinpoint locations


Concept for low-cost autonomous anti-ship submarine

Laivaston sanomat 5/2018

Herätemiinojen kehitystyö Merivoimissa

The Naval Institute Guide to Combat Fleets of the World, 16th Ed.

Uncertain Future for Swedish Silent Service

Operating submarines is expensive business. However, they do offer significant benefits, ensuring that many countries are willing to pay the cost. But one thing even more expensive than operating submarines is building up your submarine service from scratch because you had to spend a decade or so without suitable boats. That is what the Polish Navy is desperate to avoid.

The Baltic Sea proper offer an excellent stomping ground for littoral submarines (as opposed to the gulfs and straits in the Baltic that are quite narrow and shallow), and as such it comes as no surprise that several of the coastal states have submarine fleets. Sweden and Germany are the two leading submarine operators in the sea, with Russia and Poland playing second fiddle. The Polish Navy has had a few though decades recently, and the submarine fleet is no exception. The ORP Orzeł is a Project 877 ‘Kilo’-class submarine and has been in Polish service since 1986, sporting the distinction of being the first exported Kilo. The plan was for her to be joined by more sisters, but budgetary constraints led to two Project 641 ‘Foxtrot’-class submarines being leased from Soviet surplus stocks instead. These were retired in the early 00’s, while the Orzeł seem destined to serve another decade according to information that surfaced earlier this year. To keep the Orzeł company following the retirement of the Project 641’s, the Polish Navy acquired ex-Norwegian Type 207 ‘Kobben’-class. The vessels were originally built to replace a varied fleet of ex-Royal Navy and Kriegsmarine boats, and are in fact of the same generation as the Project 641’s. However, the West German submarine class is a better submarine in more or less all possible ways, and the class has undergone significant upgrades. Still, there’s no denying that their age is starting to show, and the Polish Navy already retired the first vessel of the class back in 2017.

A significant part of the Polish surface and subsurface fleet in port in Gdynia. Note the size difference between the four Kobben-class and the ORP Orzeł. Source: Joymaster via Wikimedia Commons

The solution was to have been the Orka-program, which has included all the twists and turns that have come to be expected from large Polish defence procurements. The original timeline was to have included deliveries taking place this year, but already in 2014 it was reported that the program had ran into delays. Currently, there is a large amount of uncertainty surrounding the program, with the timeline last year being said to include deliveries between 2024 and 2026 while at the same time TKMS gave the first delivery of their Type 212CD offer as taking place in 2027.

In any case, it is starting to become clear that a stop-gap solution is needed if the Polish submarine fleet isn’t to shrink to a single thirty-five year old hull. However, used submarines aren’t exactly floating around on the market in significant numbers, making the task of finding a few vessels to bridge the gap between the Kobben and Orka difficult.

On the other side of the Baltic Sea, former submarine powerhouse Sweden is down to five operational vessels in the form of the two Södermanland- and three Gotland-class submarines (this can be compared to the twelve submarines that were on strength as late as 1995). The Södermanlands are the two remaining of the originally four-strong A-17 Västergötland-class built in the late 1980’s, and underwent a serious MLU that included conversion from diesel-electric to AIP (Stirling) propulsion in the early 00’s. These are still competent boats, and as a side-note the vessels still likely hold the world-record in wire-guided torpedo salvo firing, being able to fire and simultaneously guide up to twelve 400 and 530 mm torpedoes at different targets (a nice party-trick, but likely of limited operational use to be honest). The Stirling-powered A19 Gotland-class was launched in the mid-90’s, and made headlines when the leadship was leased with crew to the US Navy for OPFOR duty, with quite some success.

Second A19 Gotland-class boat HMS Uppland being prepared for the relaunch following her MLU, that included a lengthening of the hull. Picture courtesy of Saab

The Gotland-class was quite possibly the best littoral submarine worldwide when it entered service, but things have moved on. As such, the new A26 Blekinge-class is currently being built for the Swedish Navy, and as part of the phased renewal of the Swedish submarine force the Gotland-class receives a serious MLU that include several features and subsystems of the upcoming A26 to lessen the technological risk of the newbuilds, increase synergies when operating A19 alongside A26, and to increase the lifespan of the A19.

The problem is money.

Only two MLUs have been ordered by the Swedish Navy, with HMS Gotland and HMS Uppland having been modified. So far no order has been secured to upgrade the third sister, HMS Halland, despite this being a stated priority of the outgoing Swedish CinC of the Navy. Cutting another hull from the force would likely leave the Navy unable to hold two submarines out on patrol simultaneously over prolonged times, and for a potential adversary there is a serious difference in having to worry about two submarines in the Baltic compared to one (think of it as squaring the size of the issue). But in a situation were all three services are struggling to get the funds to cover the capabilities ordered by the government, and with the surface fleet being in even worse shape, who would pay for the upgrade?

The Poles, perhaps?

According to the Polish MoD, they are currently in negotiations with the Swedish government (Saab has confirmed they aren’t involved in the negotiations at this stage) to acquire the two Södermanland-class boats as a stop-gap to replace the Type 207 Kobben-class while waiting for the Orka-class. The vessels would be updated by Saab Kockums before delivery, which potentially could fit in nicely with the fact that there are currently no submarine MLUs ongoing and the two Gävle-class corvettes should be out of MLU sometime during next year. As such there should be free docks and slipways available and engineering resources available. To cover the shortfall in Swedish submarine capability the Swedes would buy back the other two A17 vessels, that are currently in service in Singapore as the Archer-class, having undergone an MLU in the early 2010’s and another round of upgrades in recent years. This castling move would ensure that Sweden has a five-strong fleet of submarines, give Poland two relatively modern boats to replace the Kobben, and potentially bring in some much-needed cash that could be diverted (if the government is so inclined) to the upgrade of the HMS Halland.

The only problem is that there is no indication that Singapore is interested in playing along.

Befattningar Vapenteknisk officer ubåt
A crew-member inspects the no. 2 torpedo tube aboard HMS Södermanland. Note the smaller 400 mm torpedo tube below the 530 mm ones, a Swedish specialty to allow for lighter weapons being used against other submarines and lighter surface vessels which are prominent in the littorals. Source: Mattias Nurmela/Försvarsmakten

The Singaporean submarine fleet consists of the two Archer-class vessels as well as two older ex-Swedish submarines, these Challenger-class being upgraded A-11 Sjöormen-class boats. In addition, the German-built Type 218SG Invincible-class is currently being built, but none have so far entered service. Those familiar with the RSN seriously question that it would be prepared to part with the Archer-class before at least the first two, or perhaps more likely all four, of the Type 218SG are in service. If the RSN would be ready to part with something, it would likely be the Challengers, and it’s highly doubtful if Sweden would be interested in such a downgrade in capability.

Is the Polish A17 deal then dead? Quite possibly not.

The deal makes a lot of sense from a Swedish point of view. Kockums’ submarine know-how is seen as a vital strategic asset, and readers might remember the dramatic headlines when Swedish authorities assisted by soldiers from the P 7 Södra Skånska regiment in 2014 entered the facilities and left with a cargo of ‘sensitive equipment’ as part of an ongoing dispute with then-owner TKMS. The yard was sold to Saab in 2015 to ensure Swedish ownership and that they could be tasked with building the new A26-class. However, the low number of Swedish operated submarines means that keeping the know-how alive purely based on domestic orders is ever more challenging, and the export market hasn’t been kind to Swedish submarines since the controversies surrounding the Australian Collins-class. Selling the Södermanland-class to Poland would not only mean Saab getting to upgrade the two boats, but also ensuring that Saab would be well-positioned in the eventual Orka-project. If the Navy would play its cards well, it could also make the argument that the funds from the sale should be funneled to the upgrade of the last Gotland-class, ensuring all three staying in service alongside the upcoming A26-class.

And before the delivery of the A26, the Swedish submarine force would be down to three boats.

This would be a serious blow to Swedish naval capabilities, especially when it comes to intelligence gathering and more intangible effects such as threshold effects and the creation of uncertainty regarding the kinetic capabilities the Swedish Navy possess at any given time in specific parts of the Baltic Sea. This would also directly affect the Finnish intelligence picture, as Finland and Sweden cooperate closely on the establishment of the maritime situational picture in the Baltic Sea. The submarines can be assumed to be amongst the single most important assets in either the Swedish or Finnish arsenal when it comes to keeping an eye Baltiysk, the main base of the Russian Baltic Fleet, thanks to their range, endurance, sensors, and ability to remain hidden. If Sweden would go down to three submarines for a period spanning years, both Finland and Sweden would be left with a poorer picture of the whereabouts and capabilities of the Baltic Fleet.

Naval News interview with Saab from this summer about the latest status of the A26 Blekinge class

But is it a gamble worth taking?

The situation for the Swedish Navy is already dire. In effect, if HMS Halland isn’t upgraded and no more A26 are ordered, the future Swedish fleet will be down to four boats. If letting go of the Södermanlands prematurely would allow for an upgrade of all A19, and possibly the ordering of a third A26 following economics of scale thanks to A26 securing the Orka-order, gambling on a serious crisis not taking place before the delivery of the Blekinge-class again has brought the submarine force back to strength in 2026 might start to feel tempting. An important detail is also that an Orka-order would mean that the A26 would get cruise missiles, an interesting option for later integration into the Swedish submarine force as well.

After all, temporarily scrapping all artillery pieces worked out nicely. Right?

Review: Flashpoint Russia|Russia’s Air Power: Capabilities and Structure

Some books are harder to review than others, and Flashpoint Russia (ISBN 978-0-9973092-7-0) is one of them. It’s Piotr Butowski. On modern Russian military aviation. What more do you really need to know?


Okay, I realise this might not answer all your questions, so let’s dig into further detail.

This isn’t the first Harpia Publishing volume written by Butowski. I reviewed his books on their aircraft and air-launched weapons, and they are still my go-to references for anything related to the Russian Air Force equipment. However, when writing about the capabilities of the Russian Air Force (as well as Naval Aviation), knowing their equipment is just half the story. The other question is what the order of battle looks like, something that up until now largely has been a case of piecing together different sources and news stories. This is where Butowski’s latest steps in.

The book does start with a short overview of the history of the Russian military aviation post-Cold War, but it swiftly moves on to the main purpose of the book: a complete and well-researched order of battle for not only the Russian Air Force, but the Naval Aviation and the (limited) aviation assets of the three para-military services of the Federal National Guard Service (Rosgvardia), the Federal Security Service (FSB), and the Federal Guard Service (FSO). It should be noted that this means that all military and paramilitary aviation assets available to the Russian state are included, a big benefit for anyone analyzing the overall Russian capabilities. It must be said that given the relatively limited number of pages, the total stands at 142, it is a serious amount of information that Butowski has been able to cram into the book. Missing are however the civilian authorities that would be requested to assist the state, such as the aviation assets of EMERCOM and the Federal Customs Service.

FPR p71

This isn’t a book for the keen scale modeler looking for walk-arounds of aircraft or numerous colour-profiles. Granted, the book does feature the abundance of high-quality pictures we’ve come to expect form Harpia, but it is a book you get for the text and the maps. The detailed information on regiment-level units is a treasure trove for anyone trying to understand what kinds of capabilities Russia are able to bring to any part of their vast country. It even include details such as the fact that the 3rd Independent Reconnaissance Aviation Squadron (3 ORAE) at Varfolomeyevka (commanded by Lt.Col. Sergey Nomokonov) has around 20 unservicable aircraft at their base! Perhaps the one minor gripe I have is that when discussing the traditions of the units, sometimes there are mentions of details such as “the renowed 3 IAP regiment”. At these times, I would appreciate if half a sentence had been dedicated to explaining why the 3 IAP is famous? But it is a minor issue.

FPR p99

An interesting part is also the look at military aircraft acquisitions post-2000, that gets its own chapter towards the end of the book. Together with the overview of the structural and command changes in the early parts of the book, these ensure that the reader understands the detailed order of battle descriptions, as these provide a good framework for the main text.

The book is directed towards a niche readership, but so is this blog, so I have no issues highly recommending it! After all – It’s Piotr Butowski. On modern Russian military aviation. What more do you really need to know?

The review sample was received for free from Harpia Publishing for review purposes.

Keep on Rockin’

News recently broke from Denmark that the cost of the new light hangars and other infrastructure being added to Skrydstrup Air Force Base in anticipation of the arrival of the first F-35s has almost doubled from 650 million DKK (87 MEUR) to 1.1 billion DKK (150 MEUR). The news itself isn’t quite as dramatic as it looks, part of the changes stems from a change in the decision of where on the base the buildings will be placed, and it actually matches the savings of 443 million DKK (58 MEUR) that the cost of the aircraft themselves have experienced since the acquisition approval in 2016 (part of which is the drop in price of the F-35A, part of which is a more favorable exchange rate), leaving the 20 billion DKK (2.7 billion EUR) total budget largely unaffected. However, it does highlight an often overlooked issue with fighter programs, namely that a new fighter is seldom just able to drop into the slot left by an outgoing aircraft. No two transitions are exactly alike, but it does offer an interesting perspective that in the case of Denmark, infrastructure representing 5% of the value of the fighter package will have to be built, and it is something to keep in mind in February when two different Boeing-built fighters will touch down at Tampere-Pirkkala to take their turn in HX Challenge.

Screenshot_2019-11-23 LHuHrcQI (JPEG Image, 800 × 800 pixels)
A Finnish block III F/A-18E Super Hornet (closer) and an EA-18G Growler flying over a decidedly northern Finnish landscape in this render. Picture courtesy of Boeing

The Boeing F/A-18E/F Super Hornet and EA-18G Growler namely are more or less plug and play when it comes to using the existing Finnish Air Force infrastructure. Granted there are likely some obsolescence issues, general need for modernization, and the simulators will have to be replaced/seriously updated, but in general the Super Hornet can jump right in where the Hornet is currently. Exactly how much that benefit is worth compared to the competitors is unclear, but with all manufacturers having problem squeezing 64 fighters into the 10 Bn Euro budget, that also include these kinds of infrastructure changes, Boeing will have a measurable advantage.

But it doesn’t stop there, as the Super Hornet fleet would be able to utilise many of the weapons currently found in the arsenals of the Finnish Air Force. These include not only the ubiquitous AIM-120C-7 AMRAAM and the somewhat less widely certified AIM-9X, but also the JDAM and JSOW, which aren’t in use by the eurocanards. While the timeline until the retirement of the Hornet is long enough to allow for a bit of planning in arms acquisitions, the savings in weaponry can quickly start adding up, and also ensures that there isn’t a gap in missiles orders but a rolling transition which makes stepped buys of HX-weaponry easier on the budget post-2030. An interesting weapon is the silver bullet AGM-158 JASSM, which reportedly has a shelf-life roughly stretching to the end of the Finnish Hornet-era. As it is safe to assume that any Finnish Super Hornet-fleet would use the JASSM as their long-range strike weapon, this would open up the possibility of a JASSM-overhaul (possibly including some features of the current AGM-158B JASSM-ER model) that likely would be cheaper than acquiring new-built Storm Shadows.

Renders are always an interesting subject, as they provide an indication of what the manufacturer sees as the aircraft’s strong cards. In the render above Boeing has not only included the mid- and low-band NGJ pods (Next-generation jammers) currently undergoing testing and an AGM-88E AARGM anti-radiation missile on the Growler, but the single-seat F/A-18E Super Hornet feature the AARGM as well, in addition to a podded IRST-sensor and a respectable air-to-air load of six AIM-120 AMRAAM and two AIM-9 Sidewinder missiles. Considering that the Finnish Air Force places an emphasis on the counter air mission, i.e. the “candidate’s capability to perform in combats both with fighters and ground based air defence”, this is a serious combat load for the mission (it might in fact be overtly ambitious as a general load considering the cost of the weapons involved) as it allows the aircraft to not only target enemy aircraft, but to force enemy ground-based radars to either go dark or risk receiving an AARGM-sized hole in their arrays. While the basic F/A-18E isn’t capable of the kind of widespread jamming as the Growler, it does bring more shooters to the SEAD-battle compared to just having a handful of Growlers. For those interested in the lack of external fuel tanks, it should be noted that the aircraft carry conformal fuel tanks, and that this is Finland and not to the USINDOPACOM, so range requirements are rather modest.

In the meantime the Finnish Air Force is building it’s multirole capabilities, which will carry on to the HX. In the clip above from current high-end exercise KAAKKO 19 soldiers of Kymi Jaeger Battalion provide suppressive fire while a JTAC first directs artillery fire onto target, and then directs a live JDAM drop from a Hornet to finish off. While one can discuss the role of the JDAM in contested airspace, the preferred high and fast drop profile isn’t necessarily a great idea if inside enemy SAM coverage, the modern low-density battlefield does provide settings where it could come in handy.

But the low-density battlefield doesn’t just create opportunities for the Air Force to pound enemy ground forces outside of their integrated air defences, it also places high demands on issues such as situational awareness to avoid own losses, both in the air and for the units being supported on the ground. While not the most talked about features of the Block III compared to earlier versions of the Super Hornet, two items brought in with it gives huge improvements in this field: the Distributed Targeting Processor-Networked (DTP-N) and the Tactical Targeting Network Technology (TTNT) data link. The short version is that the TTNT gives more bandwidth compared to legacy datalinks, allowing more information to be transferred between aircrafts (and other sensors), while the DTP-N gives the computing power to be able to make sense of this increased data flow by fusing not only data from the aircraft’s own sensors, but from the sensors of other aircraft as well. Together they allow for the creation of a Common Tactical Picture (CTP), ensuring that all aircraft knows what any of them sees.

Now, the CTP could potentially provide the answer to one of the headaches Boeing is likely facing, namely the F/A-18E + F/A-18F + EA-18G mix. The basic fighter in the (approximately) 64 aircraft fleet will be a single-seater, in this case the F/A-18E. In addition, a number of twin-seaters will likely be included to allow for training, in this case the F/A-18F. The Finnish legacy-Hornet fleet was made up of 57 single-seaters and seven twin-seaters, with the Finnish Air Force publicly stating that in hindsight they would have preferred a larger amount of twin-seaters (this led to the unfortunate “frankenfighter”, HN-468). E.g. Saab has solved this by offering a 52 + 12 mix of single- and twin-seaters, noting that twin-seaters offer better performance in a number of missions, including SEAD/DEAD, complex ground-attack scenarios, or with the backseater working as a mission commander.

A Finnish F/A-18C Hornet during exercise Ruska 17, sporting a single AGM-158 JASSM under the starboard wing. Source: Ilmavoimat

The headache for Boeing is the fact that the EA-18G already takes up precious slots in the fleet. Looking at the typical carrier aircraft wing, it is likely that something along the lines of eight to twelve Growlers are included in the Finnish offer. Twelve standard twin-seaters would leave an Air Force with only 40 single-seaters, and while the twin-seaters are fully combat capable, there are additional costs associated with them (and with training WSOs/mission commanders). The Growlers in particular, while extremely capable and impressive, come with a premium price tag. The question then is whether the number of Fs could be scaled back? Notably the F-35A is offered only as a single-seater, and with modern fighters being easier to fly compared to legacy aircraft has made it possible to shift all or parts of conversion training to simulators and single-seaters. There is also no particular need for SEAD-configured F/A-18Fs, since that is what the EA-18G Growler is all about. The Finnish Air Force also currently flies the majority of the ground-attack missions, including long-range strike missions, with single-seat F/A-18C Hornets. The idea behind a mission commander is interesting on paper, but considering the generally improved situational awareness presented by wide-angled displays and the CTP, it is questionable if it provides enough of an edge to justify a serious buy of F/A-18Fs. Instead, leaving the mission commander role to either ground control or the senior F/A-18E pilot might very well be the desired outcome. The final ratio will likely be decided only once the wargames are over, but don’t be surprised if the number of F/A-18Fs is on the lower end.

Eurofighter goes Electric

When a European country without a domestic candidate looks for a multirole fighter, I usually rank the chances of the Eurofighter somewhere between “low” and “abysmal”. It’s not that it’s a bad aircraft, but the decision by the partner nations to focus on air-to-air performance, and to first roll it out into service for the air-to-air role, has meant that the aircraft has been weighed somewhat differently than what your average F-16AM operator wishes for.

Often overlooked is the fact that BAE Systems is one of two companies whose fast jets currently are in service with the Finnish Air Force. The humble Hawk might be a far cry from the Typhoon, but it offers BAE Systems decades of experience of working with the Finnish Air Force. Picture courtesy of BAE Systems

However, not every country in Europe is a F-16 operator. Finland is a very happy F/A-18C Hornet operator, and looks at fighters in a somewhat different way from many otherwise comparable European air forces. Part of this is down to history, part of it is the lack of a military alliance, and eventually it all translates into doctrinal differences. The gist of the argument is that the air-to-air mission always comes first, and once that can be handled, the rest will take care of itself. Or as HX programme director col. Keränen puts it:

These scenarios [according to which HX contenders are evaluated] include counter air (air defence), counter land (air to ground), counter sea (air to sea), intelligence, surveillance and reconnaissance (ISR) and targeting, and long-range strike.

Out of these five scenarios, counter air is the most critical one and therefore takes precedence. Counter air is where a candidate’s capability to perform in combats both with fighters and ground based air defence is evaluated. This is a critical capability: the HX multirole fighter may get engaged in air combat or be attacked by ground based air defence in addition to other tasks.

The official translation of the Finnish text might not be the best, but you get the point.

For Finland, the Eurofighter actually does make sense in quite a few different ways. The focus on speed and semi-recessed missiles is just what’s needed for the air policing mission, which is the key operational mission of the Air Force in peacetime. Especially after Kuopio-Rissala became the most important base for the intercepts over the Gulf of Finland, cruise speed is of the essence. For the long-range strike role, even operating solely on internal fuel the Eurofighter/Storm Shadow-combination could easily replace the JASSM equipped Hornet. The Eurofighter also has a large number of operators, all with slightly different outlooks on how to meet the need of the modern battlefield, providing several development paths to choose from.

One of the more interesting changes to appear this autumn has been the renewed focus on electronic warfare in general and the SEAD/DEAD-mission set in particular. The Eurofighter feature the DASS (Defensive Aid Sub-System), but it has generally been regarded as inferior to the SPECTRA of the Rafale or to the upcoming Arexis of Gripen E. Whether this is a correct judgement or simply an effect of the focus placed on the EW-part of their aircraft in the marketing by Dassault and Saab is impossible to judge conclusively based on open sources, but it is now clear that the Eurofighter consortium has decided to step up their game in this area.

Eurofighter Typhoon
Nothing quite says ‘electronic warfare’ as having the shape of the aircraft outlined in turquoise mesh. Image courtesy of BAE System, created by images.art.design. Werbeagentur

A key item here was the announcement of the Praetorian Evolution concept for a thorough upgrade of the DASS. Part of the larger Typhoon Long Term Evolution activity, in the words of a BAE Systems representative the “Praetorian Evolution is a conceptual roadmap that presents a number of options for a future DASS architecture”. As such, it isn’t a set package, but an assortment of options that can be picked by the operating countries to move forward with. A key part enabling this is the the ‘all digital architecture’ of the updated DASS. Elements of this already exist within the current DASS, but Praetorian Evolution would see the digital coverage increased within the system to take advantage of recent advances in the field. The idea is to turn the cranks to eleven, creating what Eurofighter has dubbed “digital stealth”.

Yes, it’s a marketing term. But as Eurofighter has decided to use the moniker for it’s EW-concept, it’s worth looking into what they mean with it to understand how they envision the Eurofighter will operate to stay survivable and lethal on the future battlefield.

The approach is two-pronged:

First, the situational awareness has to be good enough to supply the pilot with an accurate picture of the threat environment to highlight which emitters are where, allowing the pilot to make informed decisions to keep the aircraft out of range from SAMs and enemy fighters. A key part here is the mission data set (including the database allowing the correct identification of emitters), which can be updated within ‘hours’ to ensure that the aircraft understands what the sensors see. On a slightly longer scale, the software behind key subsystems such as the radars will be updated every few months. This is also a feature of the Eurofighter’s lack of locked black boxes and unforgiving IP’s that is a strong selling point compared to the transatlantic competition.

However, it isn’t always possible to simply hide and stay out of harms way. In those situations, the EW suite will do its best to either hide the signature of the aircraft, or create enough noise to make the picture confusing as to deny the enemy a targeting opportunity. For this part, the aircraft not only employ onboard, towed, and podded sensors, but will also feature the upcoming SPEAR EW. This is a stand-in jammer based on the same hardware as found in the BriteCloud expendable active decoy (also integrated on the Eurofighter), but mounted in place of the warhead on a SPEAR missile. This lighter and smaller load compared to the warhead allows for up to three times the range of the normal SPEAR, and ones fired the missile can fly towards the enemy and either simply blind the enemy radars, or spoof them by creating one or several (50 being mentioned) false targets. The triple-carriage of the baseline SPEAR is also available for the EW-variant, and allows the operators to mix and match however they want (a total of twelve can be carried on four hardpoints while still leaving the two ‘wet’ wing stations free for drop tanks). As the SPEAR is the RAF’s SEAD-weapon of choice, this allows for interesting combinations, where a pair of Typhoons can release a SPEAR EW acting as a false target to bait the enemy air defences into action, allowing the fighters to map the current positions of the enemy radars. These are then jammed by a salvo of a few more SPEAR EWs, while at the same time a dozen (or more) standard SPEAR missiles target the radars in saturation attacks. However, the SPEAR EW isn’t just a SEAD/DEAD weapon, but also plays an interesting role in air-to-air scenarios, where the ability to spoof enemy fighters create interesting tactical opportunities. While the SPEAR EW was officially unveiled only this autumn, it is part of the Eurofighter-package for HX.

Electronic combat capability is offered to Finland in our proposal in a different way [compared to the ECR] through developments in electronically-scanning radar technology and the integration of electronic warfare weapons such as SPEAR EW, which is being developed through a UK-funded programme.

Which brings us to another recently unveiled project that caused quite a stir, the Eurofighter ECR concept offered to the German Air Force.

The German Air Force is one of three NATO air forces to operate a dedicated SEAD/DEAD platform, in the form of the Tornado ECR operated by the TaktLwG 51 “Immelmann”. These will bow out together with the rest of the German Tornado-fleet during the next decade, and a replacement for the Tornado IDS and ECR fleet is sought either in the form of more Eurofighters or F/A-18E/F Super Hornets, with EA-18G Growlers providing the Tornado ECR-replacement. The Eurofighter ECR concept is tailored to meet the German requirements, and include signal-homing missiles in the form of the AGM-88E AARGM, new large podded jammers, two more ‘wet’ stations to allow the drop tanks to move out of the way for said jammers, and a new decoupled rear cockpit for the WSO. The ECR as such is not part of the offer to Finland, but “as with any technology developed by the Eurofighter consortium, the option of an ECR will be available to Finland as a future growth option.” The options also include picking just the parts of the concept deemed suitable for Finnish needs. This could e.g. translate into acquiring just the jammers without the new ‘wet’ stations and accepting the range and endurance limitations it causes.

The Eurofighter consortium’s claim is that “digital stealth” is more flexible and adaptable than traditional low-observable technologies which are built into the aircraft itself, and can more easily be adapted to face new threats. This largely follows the same line of reasoning presented by Boeing, Dassault, and Saab, and on paper hold serious merit. If there is a breakthrough in some “anti-stealth” technology, the F-35 might lose it’s most important unique selling point. However, for the foreseeable future the X-band radars will continue to play an important role in most engagements, especially for the crucial step of producing an accurate enough fix on the target’s location that it can be shot down, and here a smaller radar cross section is always smaller than a larger radar cross section. The question is how big a difference that makes compared to other features? Currently the answer is “quite a lot”, but will the same answer hold true in 2035?

Spanish Tiffie
The large number of users is perhaps the best argument for the Eurofighter continuing to be updated into the late 2050’s. Here a Spanish aircraft touches down on Finnish ground. Source: Own picture

The Eurofighter is still an underdog in the HX programme. The largest question continues to be if, and in that case how, BAE Systems can guarantee that Finland won’t be left as the sole operator trying to keep the aircraft at the cutting edge past 2050. The aircraft itself likely isn’t the issue, the space and raw power certainly is there, but the question is if the other operators will be interested in spending money on it after the FCAS and Tempest programs sees new aircraft entering service sometime after 2040. Still, it wouldn’t be the first time an underdog scores big in a Finnish defence programme, and the Eurofighter does have a few really strong cards on hand. Played right, and the competition just might turn out to the benefit of the large eurocanard.